Bài1:cho hình bình hành ABCD.Trên đường chéo BD lấy hai điểm E và F: DE=BF.c/m
a,tứ giác AEFC là hình bình hành
b,Gọi M và N lần lượt là giao điểm của AE và CF với DC và AB.c/m AC,BD,MN đồng quy tại một điểm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét và có:
DE=FB
=
AB = DC
=(c.g.c)
EC= AF
Ta có: ^DEC + ^FEC = ^AFB+^EFC=180* mà ^DEC=^AFB
-> ^FEC=^EFC -> AF//CE
Tứ giác AFCE có: EC=AF và AF//CE -> AFCE là hình bình hành
b, Gọi O là giao điểm của AC và EF -> O thuộc BD ( E,F thuộc BD )
Tứ giác ANCM có: AN// MC , AM//CN -> ANCM là hình bình hành.
-> O là giao điểm của AC và MN
-> AC, MN,BD đồng quy tại O
a. Do AE = CF nên ED = BF.
Xét tam giác MBF và NDE có:
BM = DN (gt)
BF = DE (cmt)
\(\widehat{MBF}=\widehat{NDE}\) (Hai góc đối của hình bình hành)
\(\Rightarrow\Delta MBF=\Delta NDE\left(c-g-c\right)\Rightarrow MF=EN.\)
Tương tự EM = NF. Từ đó suy ra EMFN là hình bình hành.
b. Dễ thấy MBND là hình bình hành. Xét đường chéo của hình bình hành:
Trong hbh ABCD: AC cắt BD tại trung điểm mỗi đường
Trong hbh MBND: BD cắt MN tại trung điểm mỗi đường
Trong hbh EMFN: MN cắt EF tại trung điểm mỗi đường
Vậy 4 đường thẳng trên đồng quy tại O.
a) Ta có : tứ giác ABCD là hình bình hành (gt)
\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường
\(\Rightarrow\)O là trung điểm của AC (1)
và O là trung điểm của BD
\(\Rightarrow OB=OD\)
mà \(DE=BF\left(gt\right)\)
\(\Rightarrow OB-BF=OD-DE\)
\(\Rightarrow OF=OE\)
\(\Rightarrow\)O là trung điểm của EF (2)
Từ (1) và (2) \(\Rightarrow\)tứ giác AECF là hinh bình hành
b) Ta có : tứ giác AECF là hinh bình hành (cma)
\(\Rightarrow AE//CF\)
\(\Rightarrow AM//CN\left(3\right)\)
Ta có : tứ giác ABCD là hinh bình hành (gt)
\(\Rightarrow AB//CD\)
\(\Rightarrow AN//CM\left(4\right)\)
TỪ (3) và (4) \(\Rightarrow\)tứ giác ANCM là hình bình hành
\(\Rightarrow AM=CN\)
c) Ta có : tứ giác ANMC là hinh bình hành (cmb)
\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường
\(\Rightarrow\)O là trung điểm của NM
và O là trung điểm của AC
mà O là trung điểm của BD
\(\Rightarrow\)AC , NM , DB cùng đi qua 1 điểm
a: Xét ΔADE và ΔCBF có
AD=CB
góc ADE=góc CBF
DE=BF
=>ΔADE=ΔCBF
=>AE=CF
Xét ΔABF và ΔCDE có
AB=CD
góc ABF=góc CDE
BF=DE
=>ΔABF=ΔCDE
=>AF=CE
Xét tứ giác AECF có
AE=CF
AF=CE
=>AECF là hình bình hành
b: Xét tứ giác AMCN có
AM//CN
AN//CM
=>AMCN là hình bình hành
=>AC cắt MN tại trung điểm của mỗi đường(1)
ABCD là hbh
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AC,BD,MN đồng quy
Thank