cho tam giác nhọn ABC đường phân giác AD, biết AB=c, AC=b tính độ dài đoạn AB theo b và c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ AE vuông góc BC \(\Rightarrow ED=\dfrac{BD}{2}=1\Rightarrow AE=\sqrt{AD^2-ED^2}=2\)
Theo định lý phân giác: \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\Rightarrow\dfrac{CD}{AC}=\dfrac{2}{\sqrt{5}}\Rightarrow AC=\dfrac{CD\sqrt{5}}{2}\)
Pitago: \(AE^2+EC^2=AC^2\)
\(\Leftrightarrow AE^2+\left(ED+DC\right)^2=AC^2\)
\(\Leftrightarrow4+\left(1+DC\right)^2=\dfrac{5CD^2}{4}\)
\(\Leftrightarrow\dfrac{1}{4}CD^2-2CD-5=0\) \(\Rightarrow\left[{}\begin{matrix}CD=10\\CD=-2\left(loại\right)\end{matrix}\right.\)
mình nghĩ nên đẩy ý b) lên trước vì đã tính AC đâu mà có tỉ số :D
a) Áp dụng định lí Pythagoras cho ΔvuôngABC ta có :
BC2 = AB2 + AC2
=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)
b) Tỉ số hai đoạn thẳng AB và AC : AB/AC = 9/12 = 3/4
c) Vì CD là phân giác của ^C nên theo tính chất đường phân giác trong tam giác ta có : \(\frac{AD}{AC}=\frac{BD}{BC}\)
Áp dụng tính chất dãy tí số bằng nhau ta có : \(\frac{AD}{AC}=\frac{BD}{BC}=\frac{AD+BD}{AC+BC}=\frac{AB}{AC+BC}=\frac{9}{12+15}=\frac{1}{3}\)
=> \(\hept{\begin{cases}\frac{AD}{AC}=\frac{1}{3}\\\frac{BD}{BC}=\frac{1}{3}\end{cases}}\Rightarrow\hept{\begin{cases}AD=\frac{1}{3}AC=4\left(cm\right)\\BC=\frac{1}{3}BC=5\left(cm\right)\end{cases}}\)
Đặt \(\left\{{}\begin{matrix}BD=x\\CD=y\end{matrix}\right.\) với x;y là các số nguyên dương
Áp dụng định lý phân giác:
\(\dfrac{BD}{AB}=\dfrac{CD}{AC}\Rightarrow\dfrac{x}{35}=\dfrac{y}{50}\Rightarrow y=\dfrac{10x}{7}\)
Do \(y\) nguyên và 10;7 nguyên tố cùng nhau \(\Rightarrow x\) chia hết cho7
Mặt khác theo BĐT tam giác:
\(BC< AB+AC\Rightarrow x+y< 85\)
\(\Rightarrow x+\dfrac{10x}{7}< 85\Rightarrow x< 35\)
BC lớn nhất khi x lớn nhất, số nguyên chia hết cho 7 và nhỏ hơn 35 lớn nhất là 28
Vậy \(x_{max}=28\Rightarrow BC_{max}=28+\dfrac{10.28}{7}=68\)