K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(cosx\cdot cos\left(\dfrac{pi}{3}\right)-sinx\cdot sin\left(\dfrac{pi}{3}\right)\right)-cosx+cos\left(pi+x\right)\)

\(=\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx-cosx-cosx\)

\(=\dfrac{-3}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\)

\(A=cos\left(7\pi-x\right)+3sin\left(\dfrac{3\pi}{2}+x\right)-cos\left(\dfrac{\pi}{2}-x\right)-sinx\)

\(=cos\left(x+\pi\right)+3sin\left(-\dfrac{\pi}{2}+x\right)-cos\left(\dfrac{\pi}{2}-x\right)-sinx\)

\(=-cosx-3cosx-sinx-sinx=-4cosx-2sinx\)

9 tháng 5 2016

a) P = cos(\(\frac{\Pi}{2}\) + x) + cos(2π - x) + cos(3π + x)   = -sinx + cosx - cosx = -sinx

17 tháng 6 2021

\(A=cos\left(\dfrac{\pi}{3}+\alpha\right)+cos\left(\dfrac{\pi}{3}-\alpha\right)\)

\(=cos\dfrac{\pi}{3}.cos\alpha-sin\dfrac{\pi}{3}.sin\alpha+cos\dfrac{\pi}{3}.cos\alpha+sin\dfrac{\pi}{3}.sin\alpha\)

\(=2.cos\dfrac{\pi}{3}.cos\alpha=cos\alpha\)

17 tháng 6 2021

`A=cos(π/3 +α) + cos(π/3-α)`

`=cos π/3 . cos α - sin  π/3 . sinα + cos π/3 . cosα + sin π/3 . sinα`

`=2 . 1/2 . cos α`

`= cosα`

\(A=\cos\left(\text{π}-\dfrac{x}{2}\right)-\sin\left(\text{π}-x\right)\)

\(=\sin x+\sin x=2\cdot\sin x\)

\(B=\cos\left(2\text{π}+\dfrac{\text{π}}{2}-x\right)+\sin\left(4\text{π}+\dfrac{\text{π}}{2}-x\right)-\cos\left(6\text{π}+\dfrac{3}{2}\text{π}+x\right)-\sin\left(16\text{π}+\dfrac{3}{2}\text{π}+x\right)\)

\(=\sin x+\cos x-\cos\left(\dfrac{3}{2}\text{π}+x\right)-\sin\left(\dfrac{3}{2}\text{π}+x\right)\)

\(=\sin x+\cos x-\cos\left(\text{π}+\dfrac{\text{π}}{2}+x\right)-\sin\left(\text{π}+\dfrac{\text{π}}{2}+x\right)\)

\(=\cos x+\sin x+\cos\left(\dfrac{1}{2}\text{π}+x\right)+\sin\left(\dfrac{1}{2}\text{π}+x\right)\)

\(=\cos x+\sin x-\sin x+\cos x=2\cos x\)

5 tháng 7 2021

\(A=sin\left(\dfrac{\pi}{2}-\alpha+2\pi\right)+cos\left(\pi+\alpha+12\pi\right)-3sin\left(\alpha-\pi-4\pi\right)\)

\(=sin\left(\dfrac{\pi}{2}-\alpha\right)+cos\left(\pi+\alpha\right)-3sin\left(\alpha-\pi\right)\)

\(=cos\alpha-cos\alpha+3sin\left(\pi-\alpha\right)\)\(=3sin\alpha\)

\(B=sin\left(x+\dfrac{\pi}{2}+42\pi\right)+cos\left(x+\pi+2016\pi\right)+sin^2\left(x+\pi+32\pi\right)+sin^2\left(x-\dfrac{\pi}{2}-2\pi\right)+cos\left(x-\dfrac{\pi}{2}+2\pi\right)\)

\(=sin\left(x+\dfrac{\pi}{2}\right)+cos\left(x+\pi\right)+sin^2\left(x+\pi\right)+sin^2\left(x-\dfrac{\pi}{2}\right)+cos\left(x-\dfrac{\pi}{2}\right)\)

\(=cosx-cosx+sin^2x+cos^2x+sinx\)

\(=1+sinx\)

\(C=sin\left(x+\dfrac{\pi}{2}+1008\pi\right)+2sin^2\left(\pi-x\right)+cos\left(x+\pi+2018\pi\right)+cos2x+sin\left(x+\dfrac{\pi}{2}+4\pi\right)\)

\(=sin\left(x+\dfrac{\pi}{2}\right)+2sin^2\left(\pi-x\right)+cos\left(x+\pi\right)+cos2x+sin\left(x+\dfrac{\pi}{2}\right)\)

\(=cosx+2sin^2x-cosx+1-2sin^2x+cosx\)

\(=1+cosx\)

5 tháng 7 2021

bị bỏ gp chị nhắn tin vs mấy ad ấy, nhanh ko ấy mà chị =))

18 tháng 5 2021

\(x+2y=\dfrac{\pi}{2}\)

\(\Leftrightarrow x+y=\dfrac{\pi}{2}-y\) thay vào A được:

\(A=\dfrac{cos\left(\dfrac{\pi}{2}-y\right)-cosy}{cos\left(\dfrac{\pi}{2}-y\right)+cosy}\)\(=\dfrac{siny-cosy}{siny+cosy}\)\(=\dfrac{\dfrac{\sqrt{2}}{2}.siny-\dfrac{\sqrt{2}}{2}.cosy}{\dfrac{\sqrt{2}}{2}.siny+\dfrac{\sqrt{2}}{2}cosy}\)\(=\dfrac{cos\dfrac{\pi}{4}.siny-sin\dfrac{\pi}{4}.cosy}{sin\dfrac{\pi}{4}.siny+cos\dfrac{\pi}{4}.cosy}\)

\(=\dfrac{sin\left(y-\dfrac{\pi}{4}\right)}{cos\left(y-\dfrac{\pi}{4}\right)}\)\(=tan\left(y-\dfrac{\pi}{4}\right)\)

NV
18 tháng 5 2021

\(x+2y=\dfrac{\pi}{2}\Rightarrow x+y=\dfrac{\pi}{2}-y\)

\(\Rightarrow cos\left(x+y\right)=cos\left(\dfrac{\pi}{2}-y\right)\)

\(\Rightarrow cos\left(x+y\right)=siny\)

Do đó: \(A=\dfrac{siny-cosy}{siny+cosy}=\dfrac{\sqrt{2}sin\left(y-\dfrac{\pi}{4}\right)}{\sqrt{2}cos\left(y-\dfrac{\pi}{4}\right)}=tan\left(y-\dfrac{\pi}{4}\right)\)

NV
13 tháng 4 2021

1.

\(2cos\left(a+b\right)=cosa.cos\left(\pi+b\right)\)

\(\Leftrightarrow2cosa.cosb-2sina.sinb=-cosa.cosb\)

\(\Leftrightarrow2sina.sinb=3cosa.cosb\Rightarrow4sin^2a.sin^2b=9cos^2a.cos^2b\)

\(\Rightarrow4\left(1-cos^2a\right)\left(1-cos^2b\right)=9cos^2a.cos^2b\)

\(\Leftrightarrow4-4\left(cos^2a+cos^2b\right)=5cos^2a.cos^2b\)

\(A=\dfrac{1}{cos^2a+2\left(sin^2a+cos^2a\right)}+\dfrac{1}{cos^2b+2\left(sin^2b+cos^2b\right)}\)

\(=\dfrac{1}{2+cos^2a}+\dfrac{1}{2+cos^2b}=\dfrac{4+cos^2a+cos^2b}{4+2\left(cos^2a+cos^2b\right)+cos^2a.cos^2b}\)

\(=\dfrac{4+cos^2a+cos^2b}{4+2\left(cos^2a+cos^2b\right)+\dfrac{4}{5}-\dfrac{4}{5}\left(cos^2a+cos^2b\right)}=\dfrac{4+cos^2a+cos^2b}{\dfrac{24}{5}+\dfrac{6}{5}\left(cos^2a+cos^2b\right)}=\dfrac{5}{6}\)

NV
13 tháng 4 2021

2.

\(A=2cos\dfrac{2x}{3}\left(cos\dfrac{2\pi}{3}+cos\dfrac{4x}{3}\right)=2cos\dfrac{2x}{3}\left(cos\dfrac{4x}{3}-\dfrac{1}{2}\right)\)

\(=2cos\dfrac{2x}{3}.cos\dfrac{4x}{3}-cos\dfrac{2x}{3}\)

\(=cos3x+cos\dfrac{2x}{3}-cos\dfrac{2x}{3}\)

\(=cos3x\)

\(B=\dfrac{cos2b-cos2a}{cos^2a.sin^2b}-tan^2a.cot^2b=\dfrac{1-2sin^2b-\left(1-2sin^2a\right)}{cos^2a.sin^2b}-tan^2a.cot^2b\)

\(=\dfrac{2sin^2a-2sin^2b}{cos^2a.sin^2b}-tan^2a.cot^2b=2tan^2a\left(1+cot^2b\right)-2\left(1+tan^2a\right)-tan^2a.cot^2b\)

\(=2tan^2a+2tan^2a.cot^2b-2-2tan^2a-tan^2a.cot^2b\)

\(=tan^2a.cot^2b-2\)

10 tháng 10 2023

Mn ơi cứu tui