K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

Điều kiện xác định: \(x^2-2x+1>0\)

Mà \(x^2-2x+1=\left(x-1\right)^2\ge0\forall x\in R\)

\(\Rightarrow x-1\ne0\\ \Leftrightarrow x\ne1\)

Vậy D = \(R/\left\{1\right\}\) ⇒ Chọn B.

ĐKXĐ: x^2-2x+1>0

=>(x-1)^2>0

=>x-1<>0

=>x<>1

=>Chọn B

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta thấy hàm số có nghĩa với mọi số thực nên \(D = \mathbb{R}\)

b)

Điều kiện: \(2 - 3x \ge 0 \Leftrightarrow x \le \frac{2}{3}\)

Vậy tập xác định: \(S = \left( { - \infty ;\frac{2}{3}} \right]\)

c) Điều kiện: \(x + 1 \ne 0 \Leftrightarrow x \ne  - 1\)

Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)

d) Ta thấy hàm số có nghĩa với mọi \(x \in \mathbb{Q}\) và \(x \in \mathbb{R}\backslash \mathbb{Q}\) nên tập xác định: \(D = \mathbb{R}\).

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Để hàm số \(y = \frac{1}{{\sqrt {x - 2} }}\) xác định \( \Leftrightarrow \,\,x - 2 > 0\,\, \Leftrightarrow \,\,x > 2.\)

Vậy tập xác định của hàm số là: \(D = \left( {2; + \infty } \right).\)

Chọn B.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Hàm số xác định khi: \(\sin x - 1\; \ne 0\; \Leftrightarrow \sin x \ne 1\; \Leftrightarrow x \ne \frac{\pi }{2} + k2\pi ,\;\;k \in \mathbb{Z}\)

Vậy ta chọn đáp án B

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Phương trình \({x^2} - 2 = 0\) có hai nghiệm là \(\sqrt 2 \) và \( - \sqrt 2 \), nên \(A = \{ \sqrt 2 ; - \sqrt 2 \} \)

Tập hợp \(B = \{ x \in \mathbb{R}|2x - 1 < 0\} \) là tập hợp các số thực \(x < \frac{1}{2}\)

Từ đó \(A \cap B = \{  - \sqrt 2 \} .\)

b) \(A \cap B = \{ (x;y)|\;x,y \in \mathbb{R},y = 2x - 1,y =  - x + 5\} \)

Tức là \(A \cap B\)là tập hợp các cặp số (x; y) thỏa mãn hệ phương trình: \(\left\{ \begin{array}{l}y = 2x - 1\\y =  - x + 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}2x - 1 =  - x + 5\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x = 6\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 3\end{array} \right.\)

Vậy \(A \cap B = \{ (2;3)\} .\)

c) A là tập hợp các hình thoi, B là tập hợp các hình chữ nhật.

\(A \cap B\) là tập hợp các hình vừa là hình chữ nhật vừa là hình thoi.

Một tứ giác bất kì thuộc \(A \cap B\) thì nó là hình chữ nhật và có 2 cạnh kề bằng nhau (hình vuông)

Do đó \(A \cap B\) là tập hợp các hình vuông.

22 tháng 9 2023

Hàm số \(x^{-3}\) xác định \(\Leftrightarrow x\ne0\)

\(\Rightarrow C\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 2x}}{x}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).

Ta có: \(f\left( 0 \right) = a\)

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} - 2x}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x - 2} \right)}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {x - 2} \right) = 0 - 2 =  - 2\)

Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 0\).  Khi đó:

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow a =  - 2\).

Vậy với \(a =  - 2\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Phủ định của mệnh đề A là mệnh đề “\(\exists x \in \mathbb{R},{x^2} + 4x + 5 = 0\)”

Phủ định của mệnh đề B là mệnh đề “\(\exists x \in \mathbb{R},{x^2} + x < 1\)”

Phủ định của mệnh đề C là mệnh đề “\(\forall x \in \mathbb{Z},2{x^2} + 3x - 2 \ne 0\)”

Phủ định của mệnh đề D là mệnh đề “\(\forall x \in \mathbb{Z},{x^2} \ge x\)”

14 tháng 12 2023

.

14 tháng 12 2023

a) Liệt kê các phần tử của tập hợp �={�∈�∣ 2�2+3�+1=0 }

Ta có: 2�2+3�+1=0⇔[  �=−12  �=−1 .

Do đó: �={−1}.

b) Cho hai tập hợp �={�∈�∣∣�∣>4} và �={�∈�∣−5≤�−1<5}. Xác định tập �=�\�.

Ta có:

∣�∣>4⇔[ �>4 �<−4⇒�=(−∞;−4)∪(4;+∞ ).

−5≤�−1<5⇔−4≤�<6⇒�=[−4;6).

Suy ra �=�\�=[−4;4].

22 tháng 9 2023

Hàm số \(x^{\dfrac{3}{5}}\) xác định \(\Leftrightarrow x>0\)

\(\Rightarrow D\)

ĐKXĐ là x>0

=>Chọn D