Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của BC
MD//AC
=>D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
=>E là trung điểm của AC
b: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình
=>DE//BC và DE=1/2BC
=>DE//BM và DE=BM
Xét tứ giác BDEM có
DE//BM
DE=BM
=>BDEM là hình bình hành
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
b: ADME là hình chữ nhật
=>AD//EM và AD=EM(1)
M là trung điểm của EK
=>\(EK=2EM\left(2\right)\)
A là trung điểm của ID
=>\(ID=2DA\left(3\right)\)
Từ (1),(2),(3) suy ra EK=ID
EM//AD
K\(\in\)EM
I\(\in\)AD
Do đó: EK//ID
Xét tứ giác EKDI có
EK//DI
EK=DI
Do đó: EKDI là hình bình hành
Tham khảo
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-nhon-noi-tiep-duong-tron-o-tren-canh-bc-lay-diem-d-sao-cho-abc-cad-k-la-duong-tron-noi-tiep-tam-giac-adc-e-la-chan-duong-p.205346682394
a: Xét ΔCAB có
N là trung điểm của AB
NP//AB
=>P là trung điểm của AC
Xét ΔCAB có
N là trung điểm của BC
NM//AC
=>M là trung điểm của AB
b: Xét tứ giác ANCE có
P là trung điểm chung của AC và NE
AC vuông góc NE
=>ANCE là hình thoi
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
\(\widehat{BAC}=90^0\)
Do đó: ABDC là hình chữ nhật
b: Xét ΔADE có
M,H lần lượt là trung điểm của AD,AE
=>MH là đường trung bình
=>MH//DE
=>DE vuông góc AE
Xét tứ giác ABED có \(\widehat{ABD}=\widehat{AED}=90^0\)
=>ABED là tứ giác nội tiếp
=>\(\widehat{BDE}=\widehat{EAB}\)
=>\(\widehat{BDE}=\widehat{HAB}=\widehat{C}\)
=>\(\widehat{BDE}=\widehat{C}\)
mà \(\widehat{ACB}=\widehat{ADB}\)
nên \(\widehat{BDE}=\widehat{ADB}\)
=>DB là phân giác của \(\widehat{ADE}\)