Câu 1. Rút gọn b thức :
3.(2^2 +1 ).(2^4 +1).(2^8 +1).(2^16 +1)
Câu 2.phân tích đa thức thành nhân tử ;
(x+y+z)^3 - x^3 - y^3 - z^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) 2x(3x+2) - 3x(2x+3) = 6x^2+4x - 6x^2-9x = -5x
b) \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)\)
\(=x^3+6x^2+12x+8+x^2-6x+9-x^3-5x^2\)
\(=2x^2+6x+17\)
c) \(\left(3x^3-4x^2+6x\right)\div\left(3x\right)=x^2-\dfrac{4}{3}x+2\)
câu 1:
a,x2+2x-4z2+1
=x2+2x.1+12-(2z)2
=(x+1)2-(2z)2
=(x+1-2z)(x+1+2z)
\(1,\Leftrightarrow x=10\\ 2,=x^2-4x+4-x^2+4x=4\\ 3,=\left(x+y\right)^2-49=\left(x+y+7\right)\left(x+y-7\right)\)
\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-c\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b+b-c\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b\right)-ca\left(b-c\right)\)
\(=\left(a-b\right)\left(ab-ca\right)+\left(b-c\right)\left(bc-ca\right)\)
\(=\left(a-b\right)a\left(b-c\right)+\left(b-c\right)c\left(b-a\right)\)
\(=\left(a-b\right)a\left(b-c\right)-\left(b-c\right)c\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
mình làm vội, có chỗ nào sai bạn thông cảm nha
Câu 1:8-x^3=2^3-x^3=(2-x)(4+2x+x^2)
Câu 2:Ta có:x^2-5x+4
=(x^2-2x5/2+25/4)-9/4
=(x-5/2)^2-(3/2)^2
=(x-5/2-3/2)(x-5/2+3/2)
=(x-4)(x-1)
->đa thức B là:(x-4)
->hệ số tự do của đa thức B là:-4
Câu 1:
a: Sửa đề: \(A=\left(x+2\right)\left(x^2-2x+4\right)+x\left(1-x\right)\left(1+x\right)\)
\(=x^3+2^3+x\left(1-x^2\right)\)
\(=x^3+8+x-x^3\)
=x+8
b: Khi x=-4 thì A=-4+8=4
c: Đặt A=-2
=>x+8=-2
=>x=-10
Câu 2:
a: \(x^3-3x^2=x^2\cdot x-x^2\cdot3=x^2\left(x-3\right)\)
b: \(5x^3+10x^2+5x\)
\(=5x\cdot x^2+5x\cdot2x+5x\cdot1\)
\(=5x\left(x^2+2x+1\right)\)
\(=5x\left(x+1\right)^2\)
(x+y+z)^3 - x^3 - y^3 - z^3
\(=x^3+y^3+z^3+3xy\left(x+y\right)+3yz\left(y+z\right)+3xz\left(x+z\right)-x^3-y^3-z^3\)
\(=3x^2y+3xy^2+3y^2z+3yz^2+3x^2z+3xz^2\)
\(=3\left(x^2y+xy^2+y^2z+yz^2+x^2z+xz^2\right)\)
3.(2^2 +1 ).(2^4 +1).(2^8 +1).(2^16 +1)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)