K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: y'=-4x^3+8*2x

=-4x^3+16x

y'>0 khi -4x^3+16x>0

=>-4x(x^2-4)>0

=>x(x^2-4)<0

=>x<-2; 0<x<2

Vậy: Khi x<-2 hoặc 0<x<2 thì hàm số đồng biến

y'<0 khi -4x^3+16x<0

=>-2<x<0; x>2

Vậy: Khi -2<x<0 hoặc x>2 thì hàm số nghịch biến

b: y'=4x^3

y'>0 khi x>0

=>Khi x>0 thì hàm số đồng biến

y'<0 khi 4x^3<0

=>x<0

=>Khi x<0 thì hàm số nghịch biến

a: \(y'=\dfrac{\left(x-1\right)'\left(x+1\right)-\left(x-1\right)\left(x+1\right)'}{\left(x+1\right)^2}\)

\(=\dfrac{x+1-x+1}{\left(x+1\right)^2}=\dfrac{2}{\left(x+1\right)^2}>0\)

=>Hàm số luôn đồng biến khi x<>-1

vậy: Các khoảng đồng biến là \(\left(-\infty;-1\right);\left(-1;+\infty\right)\)

b: \(y'=\dfrac{\left(2x+1\right)'\left(8x-1\right)-\left(2x+1\right)\left(8x-1\right)'}{\left(8x-1\right)^2}\)

\(=\dfrac{2\left(8x-1\right)-8\left(2x+1\right)}{\left(8x-1\right)^2}\)

\(=\dfrac{16x-2-16x-8}{\left(8x-1\right)^2}=-\dfrac{10}{\left(8x-1\right)^2}< 0\)

=>Hàm số nghịch biến khi x<>1/8

Vậy: Các khoảng nghịch biến là \(\left(-\infty;\dfrac{1}{8}\right);\left(\dfrac{1}{8};+\infty\right)\)

a: y'=3x^2-3*2x=3x^2-6x=3x(x-2)

y'>0 khi x(x-2)>0

=>x>2 hoặc x<0

=>Khi x>2 hoặc x<0 thì hàm số đồng biến

y'<0 khi x(x-2)<0

=>0<x<2

=>Khi 0<x<2 thì hàm số nghịch biến

b: y'=-3x^2+3

y'>0 khi -3x^2+3>0

=>-3x^2>-3

=>x^2<1

=>-1<x<1

Khi -1<x<1 thì hàm số đồng biến

y'<0 khi x^2>1

=>x>1 hoặc x<-1

Vậy: Khi x>1 hoặc x<-1 thì hàm số nghịch biến

a: Đặt y'>0

=>(2x-3)(x^2-1)>0

Th1: 2x-3>0 và x^2-1>0

=>x>3/2 và (x>1 hoặc x<-1)

=>x>3/2

TH2: 2x-3<0 và x^2-1<0

=>x<3/2 và -1<x<1

=>-1<x<1

=>Hàm số đồng biến khi x>3/2 hoặc -1<x<1

Đặt y'<0

=>(2x-3)(x^2-1)<0

TH1: 2x-3>0 và x^2-1<0

=>x>3/2 và -1<x<1

=>Loại

TH2: 2x-3<0 và x^2-1>0

=>x<3/2 và (x>1 hoặc x<-1)

=>1<x<3/2 hoặc x<-1

=>Hàm số nghịch biến khi 1<x<3/2 hoặc x<-1

b: Đặt y'>0

=>(x+2)(2x+5)<0

=>-5/2<x<-2

=>hàm số đồng biến khi -5/2<x<-2

Đặt y'<0

=>(x+2)(2x+5)>0

=>x>-2 hoặc x<-5/2

=>Hàm số nghịch biến khi x>-2 hoặc x<-5/2

10 tháng 11 2017

NV
22 tháng 6 2021

1.

\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)

Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)

2.

\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)

Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)

13 tháng 10 2023

a: \(y'< 0\)

=>\(\left(x-3\right)^3\cdot\left(x-1\right)^{22}\cdot\left(-3x-6\right)^7< 0\)

=>\(\left(x-3\right)\left(-3x-6\right)< 0\)

=>\(\left(x+2\right)\left(x-3\right)>0\)

=>\(\left[{}\begin{matrix}x>3\\x< -2\end{matrix}\right.\)

y'>0

=>\(\left(x+2\right)\left(x-3\right)< 0\)

=>\(-2< x< 3\)

y'=0

=>\(\left[{}\begin{matrix}x-3=0\\x-1=0\\-3x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)

Ta có bảng xét dấu sau:

x\(-\infty\)       -2                    1               3               +\(\infty\)
y'-              0        +          0      +       0              -

Vậy: Hàm số đồng biến trên các khoảng \(\left(-2;1\right);\left(1;3\right)\)

Hàm số nghịch biến trên các khoảng \(\left(-\infty;-2\right);\left(3;+\infty\right)\)

b: y'<0

=>\(\left(4x-3\right)^3\cdot\left(x^2-1\right)^{21}\left(3x-9\right)^7< 0\)

=>\(\left(4x-3\right)\left(3x-9\right)\left(x^2-1\right)< 0\)

=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)< 0\)

TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\-1< x< 1\end{matrix}\right.\Leftrightarrow-1< x< \dfrac{3}{4}\)

TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow1< x< 3\)

y'>0

=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)>0\)

TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\-1< x< 1\end{matrix}\right.\Leftrightarrow\dfrac{3}{4}< x< 1\)

Ta sẽ có bảng xét dấu sau đây:

x\(-\infty\)       -1        3/4        1       3          +\(\infty\)
y'+                   0   -     0     +   0   -   0             +

Vậy: Hàm số đồng biến trên các khoảng \(\left(-\infty;-1\right);\left(\dfrac{3}{4};1\right);\left(3;+\infty\right)\)

Hàm số nghịch biến trên các khoảng \(\left(-1;\dfrac{3}{4}\right);\left(1;3\right)\)

12 tháng 11 2023

1: TXĐ: D=R\{3}

\(y=\dfrac{x^2-6x+10}{x-3}\)

=>\(y'=\dfrac{\left(x^2-6x+10\right)'\left(x-3\right)-\left(x^2-6x+10\right)\left(x-3\right)'}{\left(x-3\right)^2}\)

=>\(y'=\dfrac{\left(2x-6\right)\left(x-3\right)-\left(x^2-6x+10\right)}{\left(x-3\right)^2}\)

=>\(y'=\dfrac{2x^2-12x+18-x^2+6x-10}{\left(x-3\right)^2}\)

=>\(y'=\dfrac{x^2-6x+8}{\left(x-3\right)^2}\)

Đặt y'<=0

=>\(\dfrac{x^2-6x+8}{\left(x-3\right)^2}< =0\)

=>\(x^2-6x+8< =0\)

=>(x-2)(x-4)<=0

=>2<=x<=4

Vậy: Khoảng đồng biến là [2;3) và (3;4]