x^3+x^2+1/3x+1/27
Giúp mik với,mik đag gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(x^6-3x^4y+3x^2y^2-y^3\)
\(=\left(x^2\right)^3-3\cdot\left(x^2\right)^2\cdot y+3\cdot x^2\cdot y^2-y^3\)
\(=\left(x^2-y\right)^3\)
d) \(\left(x-y\right)^3+\left(x-y\right)^2+\dfrac{1}{2}\left(x-y\right)+\dfrac{1}{27}\)
\(=\left(x-y\right)^3+3\cdot\dfrac{1}{3}\cdot\left(x-y\right)^2+3\cdot\left(\dfrac{1}{3}\right)^2\cdot\left(x-y\right)+\left(\dfrac{1}{3}\right)^3\)
\(=\left(x-y+\dfrac{1}{3}\right)^3\)
a, \(3\left(2x-1\right)-3x\left(-x+2\right)=5x-\left(1-3x\right)\cdot x\\ 6x-3+3x^2-6x=5x-x+3x^2\\ 3x^2-3=4x+3x^2\\ 3x^2-3x^2=4x+3\\ 4x+3=0\\ 4x=-3\\ x=\frac{-3}{4}\)
Vậy \(x=\frac{-3}{4}\)
b, \(x-\frac{x-3}{4}=3-\frac{x-3}{12}\\ \frac{4x-x-3}{4}=\frac{36-x-3}{12}\\ \frac{3x-3}{4}=\frac{33-x}{12}\\ \Rightarrow12\left(3x-3\right)=4\left(33-x\right)\\ 36x-36=132-4x\\ 36x+4x=132+36\\ 40x=168\\ x=\frac{168}{40}=\frac{21}{5}\)
Vậy \(x=\frac{21}{5}\)
a ) \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(3x^2-3x^2\right)+\left(6x+3x\right)+\left(8-1\right)=17\)
\(\Leftrightarrow9x+7=17\)
\(\Leftrightarrow9x=10\)
\(\Leftrightarrow x=\dfrac{10}{9}\)
Vậy nghiệm của p/t là : \(\dfrac{10}{9}\)
b ) \(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3+8\right)=3\)
\(\Leftrightarrow x^3-25x-x^3-8=3\)
\(\Leftrightarrow-25x-8=3\)
\(\Leftrightarrow-25x=11\)
\(\Leftrightarrow x=-\dfrac{11}{25}\)
Vậy nghiệm của p/t là : \(-\dfrac{11}{25}\)
-Chia nhỏ ra bạn ơi để nhận được câu tl sớm nhất.
-Bạn đặt không mất gì nên cứ đặt thoải mái đuyyy.
-Để dài như này khum ai làm đouuu.
a) Ta có: \(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{x-3\sqrt{x}}\right):\dfrac{2}{\sqrt{x}-3}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{2}\)
\(=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)
b) Thay \(x=3-2\sqrt{2}\) vào A, ta được:
\(A=\dfrac{\sqrt{2}-1+1}{2\cdot\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{2}}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{2}=\dfrac{2+\sqrt{2}}{2}\)
c) Để \(A< \dfrac{2}{3}\) thì \(\dfrac{\sqrt{x}+1}{2\sqrt{x}}-\dfrac{2}{3}< 0\)
\(\Leftrightarrow\dfrac{3\left(\sqrt{x}+1\right)-4\sqrt{x}}{6\sqrt{x}}< 0\)
\(\Leftrightarrow-\sqrt{x}+3< 0\)
\(\Leftrightarrow-\sqrt{x}< -3\)
\(\Leftrightarrow\sqrt{x}>3\)
hay x>9
Vậy: Để \(A< \dfrac{2}{3}\) thì x>9
Ta thấy : \(x^2+1\ge1\) nên để \(\left(3x-1\right)\left(x^2+1\right)< 0\)\(thì\) \(3x-1< 0\)\(hay\) \(x< \frac{1}{3}\)
\(\left(x-1\right)^2=5^2\\\Rightarrow x-1=5\\ \Rightarrow x=5+1=6\)
(x+x+x+...+x)+(1+2+3+...+10)=155
10x +55=155
10x=155-55
10x=100
x=10
Vậy x=10
Hok Tốt !!!!!!!!!!!!!!!!!!
1) \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x\left(x^2-16\right)\)
\(=x^3-16x-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x^3-16x-x^4+1\)
b) \(7x\left(4y-x\right)+4y\left(y-7x\right)-2\left(2y^2-3.5x\right)\)
\(=28xy-7x^2+4y\left(y-7x\right)-2\left(2y^2-3.5x\right)\)
\(=28xy-7x^2+4y^2-28xy-4y^2+7x\)
\(=-7x^2+7x\)
c) \(\left(3x-1\right)\left(2x-5\right)-4\left(2x^2-5x+2\right)\)
\(=6x^2-17x+5-4\left(2x^2-5x+2\right)\)
\(=6x^2-17x+5-8x^2+20x-8\)
\(=-2x^2+3x-3\)
a) x(x+4)(x-4)-(x2+1)(x2-1)
=>x(x2-42)-(x4-12)
=>x3-16x-x4+1
=>-x4-x3-15x
b) 7x(4y-x)+4y(y-7x)-2(2y2-3.5x)
=>28xy-7x2+4y2-28xy-4y2+30x
=>-7x2+30x
c) (3x+1)(2x-5)-4(2x2-5x+2)
=>6x2-15x+2x-5-8x2+20x-8
=>-2x2+7x-13
\(x^3+x^2+\dfrac{1}{3}x+\dfrac{1}{27}\)
\(=x^3+3\cdot\dfrac{1}{3}\cdot x^2+3\cdot\left(\dfrac{1}{3}\right)^2\cdot x+\left(\dfrac{1}{3}\right)^3\)
\(=\left(x+\dfrac{1}{3}\right)^3\)
=x^3+3*x^2*1/3+3*x*(1/3)^2+(1/3)^3
=(x+1/3)^3