Tìm Giá Trị nhỏ nhất của:
a: E= lx+8l + lx+13l + lx+50l
Các bạn giải theo lớp 7 giùm mk nhé. Thanks trước nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Khi \(x< -17,\) ta có \(D=-x-5-x-17=-2x-22\)
Do \(x< -17\Rightarrow-2x-22>12\)
Khi \(-17\le x\le-5,\) \(D=-x-5+x+17=12\)
Khi \(x>-5,\) ta có \(D=x+5+x+17=2x+22\)
Do \(x>-5\Rightarrow2x+22>12\)
Vậy GTNN của D là 12, khi \(-17\le x\le-5.\)
Câu b em làm tương tự nhé.
MK gợi ý thôi nha mk bận quá
Áp dụng công thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) là đc
a/
Ta có
\(D=\left|x+5\right|+\left|x+17\right|\ge\left|x+5+x+17\right|\)
\(\Leftrightarrow D=\left|x+5\right|+\left|-x-17\right|\ge\left|x+5-x-17\right|\)
\(\Leftrightarrow D=\left|x+5\right|+\left|-x-17\right|\ge12\)
Vậy GTNN của D là 12 khi x=-5;x=-17
Câu b tương tự
A= |x-5| +|x+17| = |5-x|+|x+17| >/ | 5-x +x+17| =22
=> Min A = 22 khi -17 </ x < / 5
B = ( |x+8| + |x+50| ) + |x+13| = ( |-x-8|+|x+50| ) + |x+13| >/ | -x-8 +x+50 | + 0 = 42
Min B =42 khi x = -13
Vì | x | ≥ 0 và | x - 8 | ≥ 0
Để A = | x | + | x - 8 | đạt GTNN <=> x = 0 và x - 8 = 0
=> x = 0 và x = 8 thì GTNN của A là 0
A=|x|+|x-8|=|x|+|8-x|
Áp dụng bất đẳng thức giá trị tuyệt đối:|a|+|b| >= |a+b|
Ta có:|x|+|8-x| >= |x+8-x| = |8|=8
=>GTNN của A là 8
Dấu "=" xảy ra<=>x.(8-x) >= 0
<=>x >= 0 và 8-x <= 0
<=>x >= 0 và x <= 8
<=>0 <= x <= 8
Vậy.............
Đặt A=|x|+|x+8|
Vì |x| >0 hoặc bằng 0 Và |x+8|cũng >0 hoặc Bằng 0
Suy ra |x|+|x+8| luôn >0 hoặc =0
Suy ra MIN A=0 khi và chỉ khi |x|=0 và |x+8|=0
suy ra x+8=0 suy ra x= -8
Bài 1:
a)|x-2|=x-2
<=>x-2=-(x-2) hoặc (x-2)
=>x-2=-x+2
=>x=2
b)|2x+3|=5x-1
=>2x+3=-(5x-1) hoặc 5x-1
=>2x+3=-5x+1
=>x=-2/7 (loại)
=>x=4/3
Bài 2:
a)Ta thấy:\(\begin{cases}\left|x-2\right|\\\left|3+y\right|\end{cases}\ge0\)
\(\Rightarrow\left|x-2\right|+\left|3+y\right|\ge0\)
\(\Rightarrow A\ge0\)
Dấu = khi \(\begin{cases}\left|x-2\right|=0\\\left|3+y\right|=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-3\end{cases}\)
Vậy MinA=0 khi x=2; y=-3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và dấu = khi \(ab\ge0\) ta có:
\(\left|x-2016\right|+\left|x-2017\right|\ge\left|x-2016+2017-x\right|=1\)
\(\Rightarrow B\ge1\)
Dấu = khi \(ab\ge0\)\(\Leftrightarrow\left(x-2016\right)\left(x-2017\right)\ge0\)\(\Leftrightarrow\begin{cases}\left(x-2016\right)\left(x-2017\right)\\2016\le x\le2017\end{cases}\)
\(\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)
Vậy MinB=1 khi x=2016 hoặc 2017