D=(x+y) biết x-y=10;x*y=24
Tìm giá trị biểu thứcHãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 10 - 3x + 3 = -5
=> 13 - 3x = -5
=> 3x = 13 + 5
=> 3x = 18
=> x = 18 : 3 = 6
b) -6|x + 3| = 15 + (-3)
=> -6|x + 3| = 12
=> |x + 3| = 12 : (-6)
=> |x + 3| = -2
=> ko có giá trị x tm
c) 17 - x = 7 - 6x
=> 17 - 7 = -6x + x
=> -5x = 10
=> x = 10 : (-5) = -2
d) Ta có: x + y = 10
x = y => y + y = 10
=> 2y = 10 => y = 5
=> x = 10 - 5 = 5
a , x = 6
b , ko có giá trị x thỏa mãn
c , -2
d , 5
k và kb nếu có thể
Tìm x, y, z biết: x,y,z tỉ lệ nghịch với 3 : 5 : 6 và x +y+ z= 42
A. x= 18; y= 14; z= 10.
B. x = 20; y = 12; z = 10.
C. x= 16; y=14.; z=12.
D. x= 20; y=10 ; z= 12.
Chúc bạn học tốt!
Tìm x, y, z biết: x,y,z tỉ lệ nghịch với 3 : 5 : 6 và x +y+ z= 42
A. x= 18; y= 14; z= 10.
B. x=20; y= 12; z= 10.
C. x= 16; y=14.; z=12.
D. x= 20; y=10 ; z= 12.
\(\begin{array}{l} - 2{x^3}{y^4}:D = x{y^2}\\ \Rightarrow D = - 2{x^3}{y^4}:x{y^2} = - 2{x^2}{y^2}\end{array}\)
\(\begin{array}{l}\left( {10{x^5}{y^2} - 6{x^3}{y^4} + 8{x^2}{y^5}} \right):\left( { - 2{x^2}{y^2}} \right)\\ = \left( {10{x^5}{y^2}} \right):\left( { - 2{x^2}{y^2}} \right) - \left( {6{x^3}{y^4}} \right):\left( { - 2{x^2}{y^2}} \right) + \left( {8{x^2}{y^5}} \right):\left( { - 2{x^2}{y^2}} \right)\\ = - 5{x^3} + 3x{y^2} - 4{y^3}\end{array}\)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{6}=\dfrac{x-y}{7-6}=\dfrac{80}{1}=80\)
\(\Rightarrow\dfrac{x}{7}=80\Rightarrow x=80\cdot7=560\)
\(\Rightarrow\dfrac{y}{6}=80\Rightarrow y=80\cdot6=480\)
b) Áp dụng tính chất dãy tỉ số bằng nhau ta có::
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{12}{11}\)
\(\Rightarrow\dfrac{x}{4}=\dfrac{12}{11}\Rightarrow x=\dfrac{4\cdot12}{11}=\dfrac{48}{11}\)
\(\Rightarrow\dfrac{y}{7}=\dfrac{12}{11}\Rightarrow y=\dfrac{7\cdot12}{11}=\dfrac{84}{11}\)
Mình làm mẫu 2 câu thôi nhé
a)
Ta có : vì|1/2-1/3+x| lớn hơn hoặc bằng 0
Còn -1/4-|y| bé hơn hoặc bằng 0
=> ko tồn tại x
b)
Ta có: |x-y| lớn hơn hoặc bằng 0 và|y+9/25| lớn hơn hoặc bằng 0 mà:
| x-y|+ |y+9/25| =0 => |x-y| =0 và |y+9/25|=0
Xét |y+9/25| có:
| y+9/25|=0 => y+9/25=0 => y=-9/25
Thay y = -9/25 vào |x-y| =0 => x=-9/25
Vậy x=y=-9/25
Vì x và y là hai đại lượng tỉ lệ thuận nên y tỉ lệ thuận với x theo hệ số tỉ lệ k
\(\Leftrightarrow y=k\cdot x\)
\(\Leftrightarrow k=\dfrac{y}{x}=\dfrac{5}{10}=\dfrac{1}{2}\)
Thay x=-5 và \(k=\dfrac{1}{2}\) vào biểu thức \(y=k\cdot x\), ta được:
\(y=\dfrac{1}{2}\cdot\left(-5\right)=\dfrac{-5}{2}=-2.5\)
Vậy: Chọn D
áp dụng Tc........... ta có:
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}=\frac{x-y+z}{5-7+4}=\frac{-10}{2}=-5\)
x/5 = -5 => x=-25
y/7=-5 =>y=-35
z/4=-5 => z= -20
Ta có :
\(x-y=10\)
\(\Rightarrow\left(x-y\right)^2=100\left(x>y\right)\)
\(\Rightarrow\left(x+y\right)^2-4xy=100\)
\(\Rightarrow\left(x+y\right)^2=100+4xy\)
mà \(x.y=24\)
\(\Rightarrow\left(x+y\right)^2=100+4.24=196\)
\(\Rightarrow\left(x+y\right)^2=14^2\)
\(\Rightarrow\left[{}\begin{matrix}x+y=4\\x+y=-4\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}D=x+y=4\\D=x+y=-4\end{matrix}\right.\)
Đính Chính
\(x+y=\pm14\)