K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

A B C M

Xét \(\Delta MBC\)ta có:

MB+MC>BC (theo bất đẳng thức tam giác)

Mà tam giác ABC đều nên AB=BC

suy ra MB+MC>AB

Ta lại có AB>MA nên MB+MC>MA

28 tháng 6 2017

M D F E A B C

Kẻ MD // BC, MF // AC, ME // AB \(\left(D\in AB,F\in BC,E\in AC\right)\)

Ta có:

\(\widehat{DBF}=\widehat{ACB}\) ( \(\Delta ABC\) đều)

\(\widehat{MFB}=\widehat{ACB}\) ( 2 góc đồng vị và MF // AC)

\(\Rightarrow\)\(\widehat{DBF}=\widehat{MFB}\)

Mà MD // BF

Nên tứ giác DMFB là hình thang cân

\(\Rightarrow\)\(DF=MB\)    \(\left(1\right)\)

Chứng minh tương tự ta có:

\(EF=MC\)    \(\left(2\right)\)

\(DE=MA\)    \(\left(3\right)\)

Xét \(\Delta DEF\) theo bất đẳng thức trong tam giác ta có:

\(DF+EF>DE\)    \(\left(4\right)\)

Từ (1), (2), (3) và (4) suy ra 

\(MB+MC>MA\left(đpcm\right)\)

6 tháng 4 2022

ko nhìn thấy 

6 tháng 4 2022

là sao ?

 

11 tháng 9 2019

A B C D 60^o

a) Cmr:

vì h là hình thang cân nên:

\(\hept{\begin{cases}\widehat{A}=\widehat{B}\\\widehat{C}=\widehat{D}\end{cases}=60^o}\)

=> MDBE là đồng vị 

My#AC

=> \(\overline{C}=\overline{MAB}\)(đồng vị)

m : C = 60 độ 

=>MEB = 60o 

mà B có 60 o

Nên cmr rằng  các tứ giác MDAF, MDBE và MECF là những hình thang cân.

b) \(\widehat{MEB}vs\widehat{BEC}\)(bù nhau)

Nên: NEB + DME = 80 o => DME =320 o

Vậy DMF > DME < EMF

c,d chịu :(

11 tháng 9 2019

Bạn kia là gì mà mình chả hiểu, hình như nhầm đề nhỉ?

A B C M x D y E F z

1/ *Chứng minh tứ giác MDAF cân:

Do MD // BC nên ^ABC = ^MDA = 60o(1). Mặt khác ^BAC = 60o nên ^DAC = 60o (2)

Từ (1) và (2) suy ra ^MDA = ^DAC (*)

Mà MF // AB -> MF //AD (**)

Từ (*) và (**) suy ra đpcm.

Các hình còn lại tương tự.

2/ Còn lại chịu.

mk ko bt lm câu b nha ~ xl

c,Vẽ tam giác đều AMD ( D thuộc nửa mặt phẳng bờ AM không chứa C)(Bạn tự vẽ hình nha, dễ như ăn kẹo ấy)

=> DM = AD = AM

Sau đó bạn chứng minh tam giác ADB = tam giác AMC (c.g.c) (cũng dễ thôi)

=> BD = MC (cặp cạnh tương ứng)

Ta có: DM = AM, BD = MC

=> DM : BM : BD = 3:4:5

=> tam giác BDM vuông tại M

=> góc AMB = 90o + 60o = 150o

6 tháng 7 2019

B M I A C

a) Ta lần lượt xét:

  • Trong \(\Delta AMI\), ta có:

                              \(MA< IA+IM\Leftrightarrow MA+MB< IA+IM+MB\)

                             \(\Leftrightarrow MA+MB< IA+IB\)                (1)

  • Trong \(\Delta BIC\),ta có:

                              \(IB< CI+CB\Leftrightarrow IA+IB< IA+CI+CB\)

                              \(\Leftrightarrow IA+IB< CA+CB\)                 (2)

Từ (1), (2), ta nhận được  \(MA+MB< IA+IB< CA+CB,đpcm\)

b) Ta lần lượt xét:

  • Trong \(\Delta MAB\), ta có \(MA+MB>AB\left(3\right)\)
  • Trong \(\Delta MBC\), ta có \(MB+MC>BC\left(4\right)\)
  • Trong \(\Delta MAC,\)ta có \(MA+MC>AC\left(5\right)\)

Cộng theo vế (3),(4),(5), ta được:

\(2\left(MA+MB+MC\right)>AB+BC+AC\)

\(\Leftrightarrow MA+MB+MC>\frac{1}{2}\left(AB+BC+AC\right),đpcm.\)

Mặt khác dựa theo kết quả cua câu a), ta có:

\(MA+MB< CA+CB\left(6\right)\)

\(MB+MC< AB+AC\left(7\right)\)

\(MA+MC< BA+BC\left(8\right)\)

Cộng theo vế (6),(7),(8), ta được:

\(2\left(MA+MB+MC\right)< 2\left(AB+BC+AC\right)\)

\(\Leftrightarrow MA+MB+MC< AB+BC+AC,đpcm.\)

26 tháng 2 2016

chắc là đ

mong các pạn ủng hộ cho mk