chứng minh với mọi số nguyên n thì :
\(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)
\(\left(2n-1\right)^3-\left(2n-1\right)⋮8\)
\(\left(n+2\right)^2-\left(n-2\right)^2⋮8\)
\(\left(n+7\right)^2-\left(n-2\right)^2⋮24\)
Lạy ông đi qua lạy bà di lại ai rủ lòng thương giúp chấu bế này cái :v
a) n2(n + 1) + 2n(n + 1)
= (n2 + 2n)(n + 1)
= n(n + 2)(n + 1) chia hết cho 6 vì là 3 số tự nhiên liên tiếp
b) (2n - 1)3 - (2n - 1)
= (2n - 1).[(2n - 1)2 - 1]
= (2n - 1).{ [ (2n - 1) + 1] . [ (2n - 1) -1 ] }
= *2n - 1) . 2n . (2n - 2) chia hết cho 8 vì là 3 số chẵn liên tiếp
c) (n + 2)2 - (n - 2)2
= n2 + 4n - 4 - (n2 - 4n + 4)
= n2 + 4n - 4 - n2 + 4n - 4
= 8n - 8 chia hết cho 8