K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2023

\(x^2+2xy+7.\left(x+y\right)+2y^2+10=0\)

\(\Leftrightarrow\left(x+y^2\right)+7.\left(x+y\right)+\dfrac{49}{4}+y^2-\dfrac{9}{4}=0\)

\(\Leftrightarrow\left(x+y+\dfrac{7}{2}^2\right)=\dfrac{9}{4}-y^2\)

\(Do\left(x+y+\dfrac{7}{2}^2\right)\ge0\Rightarrow\dfrac{9}{4}-y^2\ge0\Rightarrow y^2\le\dfrac{9}{4}\)

Mà y nguyên \(\Rightarrow\left\{{}\begin{matrix}y^2\\\\y^2=1\end{matrix}\right.=0\)

Thay vào phương trình đầu: 

Với \(y=0\Rightarrow x^2+7x+10=0\Rightarrow\left\{{}\begin{matrix}x=-2\\\\\\x=-5\end{matrix}\right.\)

Với \(y=1\Rightarrow x^2+9x+19=0\Rightarrow\) không có x nguyên

Với \(y=-1\Rightarrow x^2+5x+5=0\Rightarrow\) không có x nguyên

3 tháng 4 2020

\(x^2y^2+\left(x-2\right)^2+\left(2y-2\right)^2-2xy\left(x+2y-4\right)=0\)

<=> \(x^2y^2+\left(x+2y-4\right)^2-2\left(x-2\right)\left(2y-2\right)-2xy\left(x+2y-4\right)=0\)

<=> \(\left[x^2y^2-2xy\left(x+2y-4\right)+\left(x+2y-4\right)^2\right]-4\left(xy-x-2y+2\right)=0\)

<=> \(\left(xy-x-2y+4\right)^2-4\left(xy-x-2y+4\right)+8=0\)

<=> \(\left(xy-x-2y+2\right)^2+4=0\)(vô nghiệm)

=>phương trình vô nghiệm

30 tháng 7 2019

pt \(\Leftrightarrow\)\(\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}=-y^2+\frac{49}{4}-10\)

\(\Leftrightarrow\)\(\left(x+y+\frac{7}{2}\right)^2=-y^2+\frac{9}{4}\le\frac{9}{4}\)

\(\Leftrightarrow\)\(\frac{-3}{2}\le x+y+\frac{7}{2}\le\frac{3}{2}\)

\(\Leftrightarrow\)\(-4\le x+y+1\le-1\)

Dấu "=" tự xét nhé 

17 tháng 8 2023

\(y^2+2xy-3x-2=0\)

\(\Leftrightarrow\left(y^2+2xy+x^2\right)-\left(x^2+3x+2\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\)

Nếu \(x+1=0\) thì \(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Nếu \(x+2=0\) thì \(\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\)

Thử lại, ta thấy thỏa mãn. Vậy ta tìm được các cặp số \(\left(x;y\right)\) thỏa mãn đề bài là \(\left(-1;1\right),\left(-2;2\right)\)

3 tháng 4 2020

                                                                     Giải

5 = x2y2 + ( x-2) 2 + ( 2y-2)2 -2xy(x + 2y -4 )

    = [ x.y - ( x + 2.y -4 ) ] 2 - 2 ( y - 1 ) ( x - 2  ) 

    = ( xy - x - 2y + 4 )2 -4.( xy - x - 2y + 2 )

    = A2  - 4 ( A - 2 )

    <=> A2 - 4.A + 3 = 0

    <=>   \(\orbr{\begin{cases}xy-x-2y+4=3\\xy-x-2y+4=1\end{cases}}\)

Lưu ý : đặt : A = xy - x - 2y + 4 

TH1 : xy - x - 2.y + 4  = 3 

<=> xy - x - 2y + 1        = 0 

<=> x.( y  - 1 ) - 2.(y-1 ) = 1

<=> ( x - 2 )  (  y - 1 ) = 1 

Ta có bảng : 

x-21-1
 y - 1 1-1
3-1
y20

TH2 : xy - x - 2y + 4 = 1 

<=> ( x- 2 ) . ( y -1 ) =-1 

x-2 -11
y - 11-1
 x   -13
  20
17 tháng 2 2021

\(x^2+2xy+7\left(x+y\right)+2y^2+10=0\)0

\(< =>\left(x^2+2xy+y^2\right)+7\left(x+y\right)+y^2+10=0\)

\(< =>\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)

Đặt a=x+y ta có

\(a^2+7a+10+y^2=0\)

\(< =>a^2+7a+\frac{49}{4}-\frac{9}{4}+y^2=0\)

\(< =>\left(a+\frac{7}{2}\right)^2+y^2=\frac{9}{4}\)

Vì \(\frac{9}{4}\)=\(0+\frac{9}{4}\)và \(a+\frac{7}{2}>=y\)nên \(\hept{\begin{cases}x+y+\frac{7}{2}=\frac{3}{2}\\y=0\end{cases}}\)\(=>\hept{\begin{cases}y=0\\x=-2\end{cases}}\)