4/ Chứng minh
a) a^3+b^3+c^3-a-b-c chia hết cho 6. Với a,b,c, số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
+) a, b, c là các số nguyên tố lớn hơn 3
=> a, b, c sẽ có dạng 3k+1 hoặc 3k+2
=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 3
=> (a-b)(b-c)(c-a) chia hết cho 3 (1)
+) a,b,c là các số nguyên tố lớn hơn 3
=> a, b, c là các số lẻ và không chia hết cho 4
=> a,b, c sẽ có dang: 4k+1; 4k+3
=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 4
th1: Cả 3 số chia hết cho 4
=> (a-b)(b-c)(c-a) chia hết cho 64 (2)
Từ (1); (2) => (a-b)(b-c)(c-a) chia hết cho 64.3=192 vì (64;3)=1
=> (a-b)(b-c)(c-a) chia hết cho 48
th2: Có 2 số chia hết cho 4, Số còn lại chia hết cho 2
=> (a-b)(b-c)(c-a) chia hết cho 32 (3)
Từ (1) , (3)
=> (a-b)(b-c)(c-a) chia hết cho 32.3=96 ( vì (3;32)=1)
=> (a-b)(b-c)(c-a) chia hết cho 48
Th3: chỉ có một số chia hết cho 4, hai số còn lại chia hết cho 2
=> (a-b)(b-c)(c-a) chia hết cho 16
Vì (16; 3)=1
=> (a-b)(b-c)(c-a) chia hết cho 16.3=48
Như vậy với a,b,c là số nguyên tố lớn hơn 3
thì (a-b)(b-c)(c-a) chia hết cho 48
a+b+c chia hết cho 4 vậy suy ra có ít nhất 1 số chẵn
Vậy a.b.c chia hết cho 2.
3.a.b.c chia hết cho 3
Vậy 3.a.b.c chia hết cho 6
\(A=\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
\(=a^3-3ab\left(a+b\right)+b^3+b^3-3bc\left(b+c\right)+c^3+c^3-3ca\left(c+a\right)+a^3\)
\(=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)\(⋮3\)
Lấy \(a,b,c\)lần lượt chia cho \(2\)ta được tối đa 2 số dư là: \(0;1\)Do đó tồn tại ít nhất 2 số có cùng số dư khi chia cho 2
\(\Rightarrow\)hiệu của chúng chia hết cho 2
\(\Rightarrow\)\(A⋮2\)
mà \(\left(2;3\right)=1\)\(\Rightarrow\)\(A⋮6\)
dễ mà cô nương
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)
\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)
ta có
\(a=-5-b\)
suy ra
\(a^3-b^3=19\left(-5-2b\right)\) " xong "
2, trên mạng đầy
3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)
4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm
5. trên mạng đầy
6 , trên mang jđầy
Ta có: \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\)
Vì \(a\left(a-1\right)\) là tích của hai số tự nhiên liên tiếp=> \(a\left(a-1\right)⋮2\Rightarrow a^3-a⋮2\left(1\right)\)
Mặt khác: \(a\left(a-1\right)\left(a+1\right)\) là tích của 3 số tự nhiên liên tiếp nên trong 3 số có 1 số chia hết cho 3=> \(a^3-a⋮3\left(2\right)\)
Từ (1) (2) kết hợp với \(\left(2,3\right)=1\Rightarrow a^3-a⋮2.3\Leftrightarrow a^3-a⋮6\)
Tương tự: \(b^3-b⋮6,c^3-c⋮6\)
\(\Rightarrow\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)=a^3+b^3+c^3-a-b-c⋮6\left(đpcm\right)\)