Cho hình bình hành ABCD gọi M,N theo thứ tự là trung điểm của CD , AB . Đường chéo BD cắt AM , CN theo thứ tự P,Q Chứng Minh rằng : DP = PQ=BQ Giúp em với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(CN=ND=\dfrac{CD}{2}\)
mà AB=CD(ABCD là hình bình hành)
nên AM=MB=CN=ND
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
=>AN//CM
Ta có: AN//CM
P\(\in\)AN
Q\(\in\)CM
Do đó: MQ//AP và PN//QC
Xét ΔBAP có
M là trung điểm của BA
MQ//AP
Do đó: Q là trung điểm của BP
=>BQ=QP
Xét ΔDQC có
N là trung điểm của DC
NP//QC
Do đó: P là trung điểm của DQ
=>DP=PQ
mà PQ=QB
nên DP=PQ=QB
a) + K là trung điểm của AB ⇒ AK = AB/2.
+ I là trung điểm của CD ⇒ CI = CD/2.
+ ABCD là hình bình hành
⇒ AB // CD hay AK // CI
và AB = CD ⇒ AB/2 = CD/2 hay AK = CI
+ Tứ giác AKCI có AK // CI và AK = CI
⇒ AKCI là hình bình hành.
b) + AKCI là hình bình hành
⇒ AI//KC hay MI//NC.
ΔDNC có: DI = IC, IM // NC ⇒ DM = MN (1)
+ AI // KC hay KN//AM
ΔBAM có: AK = KB, KN//AM ⇒ MN = NB (2)
Từ (1) và (2) suy ra DM = MN = NB.
a: Xét tứ giác AICK có
AK//CI
AK=CI
Do đó: AICK là hình bình hành
Giải :
a) + K là trung điểm của AB ⇒ AK = \(\frac{AB}{2}\).
+ I là trung điểm của CD ⇒ CI = \(\frac{CD}{2}\).
+ ABCD là hình bình hành
⇒ AB // CD hay AK // CI
và AB = CD ⇒ AB/2 = \(\frac{CD}{2}\) hay AK = CI
+ Tứ giác AKCI có AK // CI và AK = CI
⇒ AKCI là hình bình hành.
b) + AKCI là hình bình hành
⇒ AI // KC hay \(\frac{MI}{NC}\).
\(a)\)
\(K\)là trung điểm \(AB\)\(\Rightarrow AK=\frac{AB}{2}\)
\(I\)là trung điểm \(CD\)\(\Rightarrow CI=\frac{CD}{2}\)
Mà theo đề ra: \(ABCD\)là hình bình hành
\(\Rightarrow AB//CD\)hay \(AK//CI\)
\(\Rightarrow AB=CD\Rightarrow\frac{AB}{2}=\frac{CD}{2}\)hay \(AK=CI\)
Tứ giác \(AKCI\)có \(AK//CI\)\(;\)\(AK=CI\)
\(\Rightarrow AKCI\)là hình bình hành
\(b)\)
Theo phần a), ta có: \(AKCI\)là hình bình hành
\(\Rightarrow AI//KC\)hay \(MI//NC\)
Ta có: AB = CD (tính chất hình bình hành)
AK = 1/2 AB (gt)
CI = 1/2 CD (gt)
Suy ra: AK = CI (1)
Mặt khác: AB // CD (gt)
⇒ AK // CI (2)
Từ (1) và (2) suy ra tứ giác AKCI là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).
⇒ AI // CK
Trong ∆ ABE, ta có:
K là trung điểm của AB (gt)
AI // CK hay KF // AE nên BF = EF (tính chất đường trung bình tam giác)
Trong ∆ DCF, ta có:
I là trung điểm của DC (gt)
AI // CK hay IE // CF nên DE = EF (tính chất đường trung bình tam giác)
Suy ra: DE = EF = FB
Ta có: AB = CD (tính chất hình bình hành)
AK = 1/2 AB (gt)
CI = 1/2 CD (gt)
Suy ra: AK = CI (1)
Mặt khác: AB // CD (gt)
⇒ AK // CI (2)
Từ (1) và (2) suy ra tứ giác AKCI là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).
⇒ AI // CK
Trong ∆ ABE, ta có:
K là trung điểm của AB (gt)
AI // CK hay KF // AE nên BF = EF (tính chất đường trung bình tam giác)
a,ta có:tg ABCD là hình bình hành
AB song song DC
AK song song IC (1)
mà K là trung điểm của AB
AK=1/2AB
tương tự IK=1/2DC
mà AB=DC
AK=IC (2)
từ (1)và(2)suy ra tg AKCI là hbh
AI song song KC
Chỉ giải được 1 câu thôi thông cảm nhé
câu b:
Vì AI//KC=)IM//NC.Tam giác DNC có đoạn IM cắt trung điểm của DC và // với NC=)M là trung điểm DN=)DM=MN
làm tương tự với tam giác AMB
chỉ giải được câu 2 thôi thông cảm nhé
AN=AB/2
CM=CD/2
mà AB=CD
nên AN=CM
Xét tứ giác ANCM có
AN//CM
AN=CM
=>ANCM là hình bình hành
=>AM//CN
Xét ΔDQC có
M là trung điểm của DC
MP//QC
=>P là trung điểm của DQ
=>DP=PQ
Xét ΔBAP có
N là trung điểm của BA
NQ//AP
=>Q là trung điểm của BP
=>BQ=QP=PD