K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =>x^3(x-2)+10x(x-2)=0

=>(x-2)(x^3+10x)=0

=>x(x-2)(x^2+10)=0

=>x(x-2)=0

=>x=0 hoặc x=2

b: =>x^2*(x-3)-16(x-3)=0

=>(x-3)(x^2-16)=0

=>(x-3)(x+4)(x-4)=0

=>\(x\in\left\{3;4;-4\right\}\)

b: 4x^2-20x+25=(x-3)^2

=>(2x-5)^2=(x-3)^2

=>(2x-5)^2-(x-3)^2=0

=>(2x-5-x+3)(2x-5+x-3)=0

=>(3x-8)(x-2)=0

=>x=8/3 hoặc x=2

c: x+x^2-x^3-x^4=0

=>x(x+1)-x^3(x+1)=0

=>(x+1)(x-x^3)=0

=>(x^3-x)(x+1)=0

=>x(x-1)(x+1)^2=0

=>\(x\in\left\{0;1;-1\right\}\)

d: 2x^3+3x^2+2x+3=0

=>x^2(2x+3)+(2x+3)=0

=>(2x+3)(x^2+1)=0

=>2x+3=0

=>x=-3/2

a: =>x^2(5x-7)-3(5x-7)=0

=>(5x-7)(x^2-3)=0

=>\(x\in\left\{\dfrac{7}{5};\sqrt{3};-\sqrt{3}\right\}\)

a: \(4x^3-xy^2\)

\(=x\left(4x^2-y^2\right)\)

\(=x\left(2x-y\right)\left(2x+y\right)\)

b: \(5x^3-10x^2+5x\)

\(=5x\left(x^2-2x+1\right)\)

\(=5x\left(x-1\right)^2\)

c: \(4x^2+24x+36-4y^2\)

\(=4\left(x^2+6x+9-y^2\right)\)

\(=4\left(x+3-y\right)\left(x+3+y\right)\)

7 tháng 9 2021

chị giỏi quá

a: Ta có: \(x\left(2-x\right)+\left(x^2+x\right)=7\)

\(\Leftrightarrow2x-x^2+x^2+x=7\)

\(\Leftrightarrow3x=7\)

hay \(x=\dfrac{7}{3}\)

b: Ta có: \(\left(2x+1\right)^2-x\left(4-5x\right)=17\)

\(\Leftrightarrow4x^2+4x+1-4x+5x^2=17\)

\(\Leftrightarrow9x^2=16\)

\(\Leftrightarrow x^2=\dfrac{16}{9}\)

hay \(x\in\left\{\dfrac{4}{3};-\dfrac{4}{3}\right\}\)

11 tháng 8 2023

a) \(4x^2+16x+3=0\)

\(\Delta'=84-12=72\Rightarrow\sqrt[]{\Delta'}=6\sqrt[]{2}\)

Phương trình có 2 nghiệm

\(\left[{}\begin{matrix}x=\dfrac{-8+6\sqrt[]{2}}{4}\\x=\dfrac{-8-6\sqrt[]{2}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2\left(4-3\sqrt[]{2}\right)}{4}\\x=\dfrac{-2\left(4+3\sqrt[]{2}\right)}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(4-3\sqrt[]{2}\right)}{2}\\x=\dfrac{-\left(4+3\sqrt[]{2}\right)}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3\sqrt[]{2}-4}{2}\\x=\dfrac{-3\sqrt[]{2}-4}{2}\end{matrix}\right.\)

b) \(7x^2+16x+2=1+3x^2\)

\(4x^2+16x+1=0\)

\(\Delta'=84-4=80\Rightarrow\sqrt[]{\Delta'}=4\sqrt[]{5}\)

Phương trình có 2 nghiệm

\(\left[{}\begin{matrix}x=\dfrac{-8+4\sqrt[]{5}}{4}\\x=\dfrac{-8-4\sqrt[]{5}}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4\left(2-\sqrt[]{5}\right)}{4}\\x=\dfrac{-4\left(2+\sqrt[]{5}\right)}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\left(2-\sqrt[]{5}\right)\\x=-\left(2+\sqrt[]{5}\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2+\sqrt[]{5}\\x=-2-\sqrt[]{5}\end{matrix}\right.\)

c) \(4x^2+20x+4=0\)

\(\Leftrightarrow4\left(x^2+5x+1\right)=0\)

\(\Leftrightarrow x^2+5x+1=0\)

\(\Delta=25-4=21\Rightarrow\sqrt[]{\Delta}=\sqrt[]{21}\)

Phương trình có 2 nghiệm

\(\left[{}\begin{matrix}x=\dfrac{-5+\sqrt[]{21}}{2}\\x=\dfrac{-5-\sqrt[]{21}}{2}\end{matrix}\right.\)

27 tháng 11 2018

Đáp án là B

12 tháng 4 2022

f (x) = 3x2 + 2x3 - 6x - 2

bậc của đa thức là: 3

 

g(x) = 5x+ 9 - 2x3 - 3x2 - 4x + 2x3 - 2

g(x) = ( 5x2 - 3x) + ( 9 -2) + ( - 2x+ 2x) - 4x

g(x) = 2x2 + 7 - 4x

bậc của đa thức là : 2

19 tháng 11 2021

a)x=x

b)x=x^1

23 tháng 7 2019

a)  x 4   –   5 x 2   +   4   =   0   ( 1 )

Đặt x 2   =   t, điều kiện t ≥ 0.

Khi đó (1) trở thành :  t 2   –   5 t   +   4   =   0   ( 2 )

Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0

⇒ Phương trình có hai nghiệm  t 1   =   1 ;   t 2   =   c / a   =   4

Cả hai giá trị đều thỏa mãn điều kiện.

+ Với t = 1 ⇒ x 2   =   1  ⇒ x = 1 hoặc x = -1;

+ Với t = 4 ⇒ x 2   =   4  ⇒ x = 2 hoặc x = -2.

Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.

b)  2 x 4   –   3 x 2   –   2   =   0 ;   ( 1 )

Đặt   x 2   =   t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  2 t 2   –   3 t   –   2   =   0   ( 2 )

Giải (2) : Có a = 2 ; b = -3 ; c = -2

⇒   Δ   =   ( - 3 ) 2   -   4 . 2 . ( - 2 )   =   25   >   0

⇒ Phương trình có hai nghiệm

Giải bài 34 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Chỉ có giá trị t 1   =   2  thỏa mãn điều kiện.

+ Với t = 2 ⇒ x 2   =   2  ⇒ x = √2 hoặc x = -√2;

Vậy phương trình (1) có tập nghiệm S = {-√2 ; √2}.

c)  3 x 4   +   10 x 2   +   3   =   0   ( 1 )

Đặt x 2   =   t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  3 t 2   +   10 t   +   3   =   0   ( 2 )

Giải (2) : Có a = 3; b' = 5; c = 3

⇒  Δ ’   =   5 2   –   3 . 3   =   16   >   0

⇒ Phương trình có hai nghiệm phân biệt

Giải bài 34 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai giá trị đều không thỏa mãn điều kiện.

Vậy phương trình (1) vô nghiệm.