c) 4.3x+2-3x-1= 963 tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{x+2}+4\cdot3^{x+1}=7\cdot3^6\\ 3^x\cdot3^2+4\cdot3^x\cdot3=5103\\ 3^x\left(9+12\right)=5103\\ 3^x\cdot21=5103\\ 3^x=243\\ 3^x=3^5\\ x=5\)
\(4.3^{x+2}-3^{x-1}=963\)
\(\Rightarrow4.3^{x+2}-3^{x+2-3}=963\)
\(\Rightarrow4.3^{x+2}-\dfrac{1}{3^3}3^{x+2}=963\)
\(\Rightarrow4.3^{x+2}-\dfrac{1}{27}3^{x+2}=963\left(1\right)\)
Đặt \(t=3^{x+2}>0\)
\(\left(1\right)\Rightarrow4t-\dfrac{1}{27}t=963\)
\(\Rightarrow t\left(4-\dfrac{1}{27}\right)=963\)
\(\Rightarrow\dfrac{107}{27}.t=9.107\)
\(\Rightarrow t=3^2\Rightarrow t=3^2:\dfrac{1}{3^3}=3^2.\dfrac{3^3}{1}=3^5\)
\(\Rightarrow3^{x+2}=3^5\Rightarrow x+2=5\Rightarrow x=3\)
4\(\cdot\)3x+2-3x-1=963
=>4\(\cdot\)3xx32-3x:3=963
=>3x\(\cdot\)36-3x\(\cdot\)\(\dfrac{1}{3}\)=963
=>3x\(\cdot\)(36-\(\dfrac{1}{3}\))=963
=>3x\(\cdot\)\(\dfrac{107}{3}\)=963
=>3x=963:\(\dfrac{107}{3}\)=27=33
=>x=3
a. 113 + 142 + x = 999 – 103
255 + x = 896
x = 896 – 255
x = 641
b. x – 124 = 400 + 56
x – 124 = 456
x = 456 + 124
x = 580
c. 963 – x = 869 – 28 : 4
963 – x = 869 – 7
963 – x = 862
x = 963 – 862
x = 101
Ta có: \(4.3^{x+2}-2.3^{x+1}=810\)
\(4.3^{x+1}.3-2.3^{x+1}=810\)
\(2.3^{x+1}\left(2.3-1\right)=810\)
\(2.3^{x+1}.5=810\)
\(3^{x+1}=81=3^4\)
x+1=4
x=3
\(\left(3x+1\right)^2=25\)
\(\Rightarrow\left(3x+1\right)^2=5^2=\left(-5\right)^2\)
\(\Rightarrow\orbr{\begin{cases}3x+1=5\\3x+1=-5\end{cases}\Rightarrow\orbr{\begin{cases}3x=5-1=4\\3x=-5-1=-6\end{cases}}}\Rightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-2\end{cases}}\)
\(\left[x-\frac{1}{2}\right]+\frac{1}{2}=\frac{5}{8}\)
\(\Rightarrow x-0=\frac{5}{8}\)
\(x=\frac{5}{8}\)
\(\left[x+\frac{3}{4}\right]-\frac{1}{3}=0\)
\(x+\frac{3}{4}=0+\frac{1}{3}=\frac{1}{3}\)
\(x=\frac{1}{3}-\frac{3}{4}\)
\(x=\frac{-5}{12}\)
Đặt \(3^x=a\) \(\left(a>0\right)\)
Phương trình \(\Leftrightarrow a^2-4a+m-2=0\) (*)
Yêu cầu bài toán \(\Leftrightarrow\) Phương trình (*) có 2 nghiệm dương phân biệt
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\a_1+a_2>0\\a_1\cdot a_2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4-\left(m-2\right)>0\\4>0\left(t/m\right)\\m-2>0\end{matrix}\right.\) \(\Leftrightarrow\) ...
\(4\cdot3^{x+2}-3^{x-1}=963\\ \Leftrightarrow36\cdot3^x-\dfrac{1}{3}\cdot3^x=963\\ \Leftrightarrow3^x=27\\ \Leftrightarrow x=3\)
\(4.3^{x+2}-3^{x-1}=963\\ \Leftrightarrow4.3^2.3^x-\dfrac{3^x}{3}=963\\ \Leftrightarrow3^x.\left(36-\dfrac{1}{3}\right)=963\\ \Leftrightarrow3^x.\dfrac{107}{3}=963\\ \Leftrightarrow3^x=27\\ \Leftrightarrow3^x=3^3\\ \Leftrightarrow x=3\)
Vậy x= 3