CHO TAM GIÁC ABC VUÔNG TẠI A, ĐƯỜNG CAO AH, BIẾT AB=10cm, BH=5cm. CMR: tan B= 3tan C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC\)có A = \(90^0\)và AH là đường cao
Áp dụng hệ thức trong tam giác vuông
=>\(AB^2=BH.BC\Leftrightarrow BC=\frac{AB^2}{BH}=\frac{10^2}{5}=20\)
=>\(AC^2=CH.BC\Leftrightarrow AC=\sqrt{\left(BC-BH\right)BC}\)=\(\sqrt{\left(20-5\right)20}=10\sqrt{3}\)
=>\(BC.AH=AB.AC\Leftrightarrow AH=\frac{AB.AC}{BC}\)\(\Leftrightarrow\frac{10.10\sqrt{3}}{20}=5\sqrt{3}\)
\(TgB=\frac{AH}{BH}=\frac{5\sqrt{3}}{5}=\sqrt{3}\)
\(TgC=CotgB=\frac{BH}{AH}=\frac{5}{5\sqrt{3}}=\frac{1}{\sqrt{3}}\)=\(\frac{\sqrt{3}}{3}\)
=>\(\sqrt{3}=3.\frac{\sqrt{3}}{3}\)\(\Rightarrow TgB=3TgC\)
Áp dụng Py-ta-go ta có
AH^2=AB^2-BH^2=>AH=5căn3
Áp dụng hệ thức lượng trong tam giác
AH^2=BH*HC=>HC=AH^2/BH=15
=>tanB=5căn3/5=căn3
tanC=5căn3/15
=>3tanC=5căn3/15*3=căn3
nên tanB=3tanC
Áp dụng Py-ta-go trong tam giác vuông AHB ta được: \(AH=\sqrt{AB^2-BH^2}=\sqrt{10^2-5^2}=5\sqrt{3}cm\)
Ta có: \(AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{\left(5\sqrt{3}\right)^2}{5}=15cm\)
\(\tan B=\frac{AH}{BH}=\frac{5\sqrt{3}}{5}=\sqrt{3}\) (1) \(\tan C=\frac{AH}{CH}=\frac{5\sqrt{3}}{15}=\frac{1}{\sqrt{3}}\)(2)
Lấy \(\frac{\left(1\right)}{\left(2\right)}=\frac{\tan B}{\tan C}=\frac{\sqrt{3}}{\frac{1}{\sqrt{3}}}=3\Rightarrow tanB=3tanC\) Vậy tanB = 3tanC
a: BC=4+5=9(cm)
\(AB=\sqrt{4\cdot9}=6\left(cm\right)\)
\(AC=\sqrt{5\cdot9}=3\sqrt{5}\left(cm\right)\)
b: \(BH=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(CH=\dfrac{AH^2}{BH}=4,5\left(cm\right)\)
\(AC=\sqrt{6^2+4.5^2}=7,5\left(cm\right)\)
1)
a) trong tam giac ABC vuong tai A co
+)BC2=AB2+AC2
suy ra AC=12cm
+)AH.BC=AB.AC
suy ra AH=7,2cm
b) Trong tu giac AMHN co HMA=HNA=BAC=90 do suy ra AMHN la hcn suy ra AH=MN=7,2cm
suy ra MN=7,2cm
c) goi O la giao diem cu MN va AH
Vi AMHN la hcn (cmt) nen OA=OH=7,2/2=3,6cm
suy ra SBMCN=1/2[OH*(MN+BC)]=39,96cm2
d) Vi AMHN la hcn nen goc AMN=goc HAB
Trong tam giac ABC vuong tai A co AK la dg trung tuyen ung voi canh huyen BC nen AK=BK=KC
suy ra tam giac AKB can tai K
suy ra goc B= goc BAK
Ta co goc B+ goc BAH=90 do
tuong duong BAK+AMN=90 do suy ra AK vuong goc voi MN (dmcm)
BÀI 1:
a)
· Trong ∆ ABC, có: AB2= BC.BH
Hay BC= =
· Xét ∆ ABC vuông tại A, có:
AB2= BH2+AH2
↔AH2= AB2 – BH2
↔AH= =4 (cm)
b)
· Ta có: HC=BC-BH
àHC= 8.3 - 3= 5.3 (cm)
· Trong ∆ AHC, có:
·
Bài 1:
a) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Rightarrow\)\(AH^2=AB^2-BH^2\)
\(\Rightarrow\)\(AH^2=5^2-3^2=16\)
\(\Rightarrow\)\(AH=4\)
b) \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)
\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)
\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)
\(\Rightarrow\)\(HE=\frac{16}{5}\)
\(1,\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)
\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)
Xét ΔABC vuông tại A có
\(AB^2=BH\cdot BC\)
hay BC=33,8(cm)
Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=31,2(cm)
Xét ΔBAC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{13}{33.8}=\dfrac{5}{13}\)
\(\cos\widehat{C}=\dfrac{12}{13}\)
\(\tan\widehat{C}=\dfrac{5}{12}\)
\(\cot\widehat{C}=\dfrac{12}{5}\)