Cho tam giác ABC, 2 đường phân giác góc B, C cắt nhau tại I. Kẻ IE vuông góc AC, IF vuông góc AB ( E thuộc AC, F thuộc AB ). Chứng minh rằng
a) IE = IF
b) AI là phân giác góc A
( Vẽ hình giúp mình nhé )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBDI vuông tại D và ΔBFI vuông tại F có
BI chung
\(\widehat{DBI}=\widehat{FBI}\)
Do đó: ΔBDI=ΔBFI
=>ID=IF
Xét ΔCFI vuông tại F và ΔCEI vuông tại E có
CI chung
\(\widehat{FCI}=\widehat{ECI}\)
Do đó: ΔCFI=ΔCEI
=>IE=IF
b: IE=IF
ID=IF
Do đó: IE=ID
Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
ID=IE
Do đó: ΔADI=ΔAEI
=>\(\widehat{DAI}=\widehat{EAI}\)
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của \(\widehat{BAC}\)
Xét ΔBDI vuông tại D và ΔBEI vuông tại E có
BI chung
góc DBI=góc EBI
Do đó: ΔBDI=ΔBEI
=>ID=IE
Xét ΔAEI vuông tại E và ΔAFI vuông tại F có
AI chung
góc EAI=góc FAI
Do đó: ΔAEI=ΔAFI
=>IE=IF=ID
a) Xét \(\Delta BID\)và \(\Delta BIE\)có:
\(\widehat{IDB}=\widehat{IEC}=90^o\)
BI là cạnh chung
\(\widehat{DBI}=\widehat{EBI}\)(BI là tia p/g của \(\widehat{B}\))
\(\Rightarrow\Delta BID=\Delta BIE\left(CH-GN\right)\)
=> ID = IE (2 cạnh tương ứng) (1)
Xét \(\Delta CIE\)và \(\Delta CIF\)có:
\(\widehat{IEC}=\widehat{IFC}=90^o\)
CI là cạnh chung
\(\widehat{ECI}=\widehat{FCI}\)(CI là tia p/g của \(\widehat{C}\))
\(\Rightarrow\Delta CIE=\Delta CIF\left(CH-GN\right)\)
=> IE = IF (2 cạnh tương ứng) (2)
Từ (1) và (2) => ID = IE = IF
b)
Xét 2 TG vuông DBI và EBI, ta có:
DBI=IBE(BI là phân giác của góc B); BI:cạnh chung
=>TG DBI=TG EBI(cạnh huyền- góc nhọn)
=>ID=IE(2 cạnh tương ứng)
Xét 2 TG vuông EIC và FIC, ta có:
ECI=FCI(CI là phân giác góc C); CI:cạnh chung
=>TG EIC=TG FIC(cạnh huyền- góc nhọn)
=>IE=IF(2 cạnh tương ứng)
*Ta có: ID=IE(cmt); IE=IF(cmt)=>ID=IE=IF
Xét tam giác BDI và tam giác BEI có
IB(cạnh chung, hay là cạnh huyền)
gócB1=gócB2(gt)
gócD=gócE(=90độ)
suy ra tam giac BDI =tam giác BEI (cạnh huyền, góc nhọn)
suy ra cạnh ID=cạnh IE (2 cạnh tương ứng) (1)
Xét tam giác CEI và tam giác FIC có
IC ( cạnh chung,hay là cạnh huyền)
cạnh IE= cạnh IF(=90độ)
góc C1= góc C2( gt)
suy ra tam giác CEI = tam giác FIC(cạnh huyền, góc nhọn ) (2)
Từ đó ta suy ra ID=IE=IF(đpcm)
Từ (1) và (2) suy ra cạnh
Xét tam giác EIC và tam giác FIC có:
IC chung
\(\widehat{ECI}\) = \(\widehat{FCI}\)
\(\widehat{IEC}\) = \(\widehat{IFC}\)
Suy ra 2 tam giác này bằng nhau (1)
xét tam giác DBI và tam giác FBI có:
BI chung
góc FBI bằng góc IBD
góc BDI bằng góc IFB
Suy ra 2 tam giác này bằng nhau (2)
Xét tam giác BIF và tam giác CIF có:
IF chung
góc IFC bằng góc IFB
góc IBF bằng góc ICF
Suy ra hai tam giác này bằng nhau (3)
TỪ (1), (2), (3) TA SUY RA ĐOẠN THẲNG IE = ID = IF ( 3 cạnh tương ứng)
a: Kẻ IH vuông góc BC
Xét ΔBFI vuông tại F và ΔBHI vuông tại H có
BI chung
góc FBI=góc HBI
=>ΔBFI=ΔBHI
=>IH=IF
Xét ΔCHI vuông tại I và ΔCEI vuông tại E có
CI chung
góc HCI=góc ECI
=>ΔCHI=ΔCEI
=>IH=IE
=>IE=IF
b: Xét ΔAEI vuông tại E và ΔAFI vuông tại F có
AI chung
IE=IF
=>ΔAEI=ΔAFI
=>góc EAI=góc FAI
=>AI là phân giác của góc BAC