Không sử dụng đường trung bình giúp em.
Cho tam giác ABC có trực tâm H. Các đường vuông góc với AB tại B, vuông góc với AC tại C cắt nhau ở D. Chứng minh BDCH là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác BDCH có
BD//CH
BH//CD
Do đó: BDCH là hình bình hành
a) Vì BHCD có các cặp cạnh đối song song nên là hình bình hành.
b) Tứ giác ABCD có A B D ^ = A C D ^ = 90 0 m à B A C ^ = 60 0 nên B D C ^ = 120 0
a: Xét tứ giác BDCH có
BD//CH
BH//CD
Do đó: BDCH là hình bình hành
a: Xét tứ giác BDCH có
BD//CH
BH//CD
Do đó: BDCH là hình bình hành
b: Xét tứ giác ABDC có \(\widehat{ABD}+\widehat{ACD}=180^0\)
nên ABDC là tứ giác nội tiếp
Suy ra: \(\widehat{BDC}=180^0-\widehat{BAC}=120^0\)
a: Xét tứ giác BDCH có
BH//CD
BD//CH
Do đó: BDCH là hình bình hành
b: \(\widehat{BDC}=180^0-60^0=120^0\)
BD vuông góc AB
CH vuông góc AB
=>BD//CH
CD vuông góc AC
BH vuông góc AC
=>CD//BH
Xét tứ giác BDCH có
BD//CH
BH//CD
=>BDCH là hình bình hành