K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

=\(\sqrt{3-\sqrt{5}}\)\(\sqrt{2}\)(\(\sqrt{5}-1\)) (\(3+\sqrt{5}\))

=\(\sqrt{6-2\sqrt{5}}\)(\(\sqrt{5}-1\)) (\(3+\sqrt{5}\))

=\(\sqrt{\left(\sqrt{5}+1\right)^2}\)(\(\sqrt{5}-1\))(\(3+\sqrt{5}\))

=(\(\sqrt{5}+1\))(\(\sqrt{5}-1\))(\(3+\sqrt{5}\))

=4(\(3+\sqrt{5}\))

=12+4\(\sqrt{5}\)

4 tháng 8 2017

\(=\sqrt{3-\sqrt{5}}.\sqrt{2}.\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(=\sqrt{6-2\sqrt{5}}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(=\sqrt{\left(\sqrt{5}-1\right)^2}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(=\left(\sqrt{5}-1\right)\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(=\left(\sqrt{5}-1\right)^2\left(3+\sqrt{5}\right)\)

\(=\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)\)

\(=2\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)

\(=2\left(9-\left(\sqrt{5}\right)^2\right)\)

\(=2.4=8\)

Chỉ vậy thôi nha bạn ^_^

4 tháng 8 2017

\(C=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}.\sqrt{3+\sqrt{5}.}\sqrt{2}\left(\sqrt{5}-1\right)\)

\(C=\sqrt{4}.\sqrt{6+2\sqrt{5}}\left(\sqrt{5}-1\right)\)

\(C=2.\sqrt{\left(\sqrt{5}+1\right)^2}.\left(\sqrt{5}-1\right)\)

\(C=2.\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=2.4=8\)

28 tháng 9 2023

\(1,=\left|1-\sqrt{2}\right|+\left|\sqrt{2}+3\right|\\ =1-\sqrt{2}+3+\sqrt{2}\\ =4\\ 2,=\left|\sqrt{3}-2\right|+\left|\sqrt{3}-1\right|\\ =\sqrt{3}-2+\sqrt{3}-1\\ =2\sqrt{3}-3\\ 3,=\left|\sqrt{5}-3\right|+\left|\sqrt{5}-2\right|\\ =\sqrt{5}-3+\sqrt{5}-2\\ =2\sqrt{5}-5\\ 4,=\left|3+\sqrt{2}\right|+\left|3-\sqrt{2}\right|\\ =3+\sqrt{2}+\sqrt{3}-\sqrt{2}\\ =3+\sqrt{3}\\ 5,=\left|2-\sqrt{3}\right|-\left|2+\sqrt{3}\right|\\ =2-\sqrt{3}-\left(2+\sqrt{3}\right)\\ =2-\sqrt{3}-2-\sqrt{3}\\ =-2\sqrt{3}\)

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

j.

\(J=\left[\frac{1}{\sqrt{(\sqrt{5}-\sqrt{2})^2}}-\frac{\sqrt{2}}{\sqrt{2}(\sqrt{5}+\sqrt{2})}+1\right].\frac{1}{(\sqrt{2}+1)^2}\)

\(=\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right).\frac{1}{(\sqrt{2}+1)^2}\)

\(=[\frac{\sqrt{5}+\sqrt{2}-(\sqrt{5}-\sqrt{2})}{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})}+1].\frac{1}{(\sqrt{2}+1)^2}=(\frac{2\sqrt{2}}{3}+1).\frac{1}{(\sqrt{2}+1)^2}=\frac{3+2\sqrt{2}}{3}.\frac{1}{3+2\sqrt{2}}=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

k. Đề sai sai, bạn xem lại

o.

\(O=(4+\sqrt{15})(\sqrt{5}-\sqrt{3}).\sqrt{2}.\sqrt{4-\sqrt{15}}\)

\(=(4+\sqrt{15}(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})=(4+\sqrt{15})(8-2\sqrt{15})\)

\(=2(4+\sqrt{15})(4-\sqrt{15})=2(16-15)=2\)

 

AH
Akai Haruma
Giáo viên
26 tháng 8 2023

Lời giải:

a. $=|3+\sqrt{2}|-|3-2\sqrt{2}|=(3+\sqrt{2})-(3-2\sqrt{2})$

$=3\sqrt{2}$

b. $=|\sqrt{7}-2\sqrt{2}|-|\sqrt{7}+2\sqrt{2}|$

$=(2\sqrt{2}-\sqrt{7})-(\sqrt{7}+2\sqrt{2})$

$=-2\sqrt{7}$

c.

$=|3+\sqrt{5}|+|3-\sqrt{5}|=(3+\sqrt{5})+(3-\sqrt{5})=6$

d.

$=|2-\sqrt{3}|-|2+\sqrt{3}|=(2-\sqrt{3})-(2+\sqrt{3})=-2\sqrt{3}$

7 tháng 7 2021

\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{2}\right)=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)\)

\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)

7 tháng 7 2021

\(=\left[\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right]\left(\sqrt{5}-\sqrt{2}\right)=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)

6 tháng 8 2021

\(=2\left|3-\sqrt{2}\right|+\sqrt{18}-5.1=6-2\sqrt{2}+3\sqrt{2}-5\)

\(=1+\sqrt{2}\)

22 tháng 1 2022

\(a,\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|=\sqrt{3}+1+\sqrt{3}-1=2\sqrt{3}\)

\(b,A=\dfrac{\sqrt{a}}{\sqrt{a}-5}-\dfrac{10\sqrt{a}}{a-25}-\dfrac{5}{\sqrt{a}+5}\)

\(\Rightarrow A=\dfrac{\sqrt{a}\left(\sqrt{a}+5\right)}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}-\dfrac{10\sqrt{a}}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}-\dfrac{5\left(\sqrt{a}-5\right)}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)

\(\Rightarrow A=\dfrac{a+5\sqrt{a}}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}-\dfrac{10\sqrt{a}}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}-\dfrac{5\sqrt{a}-25}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)

\(\Rightarrow A=\dfrac{a+5\sqrt{a}-10\sqrt{a}-5\sqrt{a}+25}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)

\(\Rightarrow A=\dfrac{a-10\sqrt{a}+25}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)

\(\Rightarrow A=\dfrac{\left(\sqrt{a}-5\right)^2}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)

\(\Rightarrow A=\dfrac{\sqrt{a}-5}{\sqrt{a}+5}\)

a: \(=\sqrt{3}+1+\sqrt{3}-1=2\sqrt{3}\)

b: \(A=\dfrac{a+5\sqrt{a}-10\sqrt{a}-5\sqrt{a}+25}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}=\dfrac{\left(\sqrt{a}-5\right)^2}{a-25}=\dfrac{\sqrt{a}-5}{\sqrt{a}+5}\)

a) Ta có: \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2\cdot\sqrt{20}\cdot3+9}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5-2\cdot\sqrt{5}\cdot1+1}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)

\(=\sqrt{1}=1\)

b) Ta có: \(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)

\(=\sqrt{6+2\sqrt{5}-\sqrt{20-2\cdot2\sqrt{5}\cdot3+9}}\)

\(=\sqrt{6+2\sqrt{5}-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)

\(=\sqrt{6+2\sqrt{5}-\left(2\sqrt{5}-3\right)}\)

\(=\sqrt{6+3}=3\)

c) Sửa đề: \(\sqrt{2+\sqrt{5+\sqrt{13-\sqrt{48}}}}\)

Ta có: \(\sqrt{2+\sqrt{5+\sqrt{13-\sqrt{48}}}}\)

\(=\sqrt{2+\sqrt{5+\sqrt{12-2\cdot2\sqrt{3}\cdot1+1}}}\)

\(=\sqrt{2+\sqrt{5+\sqrt{\left(2\sqrt{3}-1\right)^2}}}\)

\(=\sqrt{2+\sqrt{5+2\sqrt{3}-1}}\)

\(=\sqrt{2+\sqrt{3+2\sqrt{3}\cdot1+1}}\)

\(=\sqrt{2+\sqrt{\left(\sqrt{3}+1\right)^2}}\)

\(=\sqrt{3+\sqrt{3}}\)

d) Ta có: \(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)

\(=\dfrac{\left(6-2\sqrt{5}\right)\sqrt{6+2\sqrt{5}}+\left(6+2\sqrt{5}\right)\sqrt{6-2\sqrt{5}}}{2\sqrt{2}}\)

\(=\dfrac{\left(\sqrt{5}-1\right)^2\cdot\left(\sqrt{5}+1\right)+\left(\sqrt{5}+1\right)^2\cdot\left(\sqrt{5}-1\right)}{2\sqrt{2}}\)

\(=\dfrac{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\left(\sqrt{5}-1+\sqrt{5}+1\right)}{2\sqrt{2}}\)

\(=\dfrac{4\cdot2\sqrt{5}}{2\sqrt{2}}\)

\(=\dfrac{8\sqrt{5}}{2\sqrt{2}}=\dfrac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)