x^2-4x^y^2+y^2+2xy phân tích đa thức -> nhân tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + 4x – 2xy – 4y + y2 = (x2-2xy+ y2) + (4x – 4y) → bạn Việt dùng phương pháp nhóm hạng tử
= (x - y)2 + 4(x – y) → bạn Việt dùng phương pháp dùng hằng đẳng thức và đặt nhân tử chung
= (x – y)(x – y + 4) → bạn Việt dùng phương pháp đặt nhân tử chung
s) = ( x2 - 2xy + y2 ) - ( 2xy )2 = ( x - y - 2xy )( x - y + 2xy )
u) sửa +4y thành -4y
= 4( x - y ) - x2( x - y ) = ( x - y )( 2 - x )( 2 + x )
Bài 2:
a: =>4x(x+5)=0
=>x=0 hoặc x=-5
b: =>(x+3)(x-3)=0
=>x=-3 hoặc x=3
a: \(=\left(x+2-y\right)\left(x+2+y\right)\)
c: \(=\left(x-y\right)^2\)
a) 10x + 15y = 5(2x + 3y)
b) x2 - 2xy - 4 + y2
= (x2 - 2xy + y2) - 4
= (x - y)2 - 22
= (x - y + 2)(x - y - 2)
c) x(x + y) - 3x - 3y
= x(x + y) -3(x + y)
= (x - 3)(x + y)
a, \(10x+15y=5\left(2x+3y\right)\)
b, \(x^2-2xy-4+y^2=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)
c, \(x\left(x+y\right)-3x-3y=x\left(x+y\right)-3\left(x+y\right)=\left(x-3\right)\left(x+y\right)\)
Cách 1: \(x^2-2xy+y^2+4x-4y-5=\left(y^2-xy+y\right)+\left(-xy+x^2-x\right)+\left(-5y+5x-5\right)\)
\(=y\left(y-x+1\right)-x\left(y-x+1\right)-5\left(y-x+1\right)=\left(y-x+1\right)\left(y-x-5\right)\)
Cách 2: \(x^2-2xy+y^2+4x-4y-5=\left(x^2+y^2+2^2-2xy+4x-4y\right)-9\)
\(=\left(y-x-2\right)^2-3^2=\left(y-x-2-3\right)\left(y-x-2+3\right)=\left(y-x-5\right)\left(y-x+1\right)\)
\(4x^2+2xy+4x+y+1\)
\(=\left(4x^2+2x\right)+\left(2xy+y\right)+\left(2x+1\right)\)
\(=2x\left(2x+1\right)+y\left(2x+1\right)+\left(2x+1\right)\)
\(=\left(2x+y+1\right)\left(2x+1\right)\)
\(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x^2+2xy+y^2\right)-4x^2y^2\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
\(=\left(x-y\right)^2\left(x+y\right)^2\)
x mũ bao nhiêu bạn ghi lại đề