K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2018

1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)

\(36x+20-4n^2+4n\)

\(\Rightarrow36x+21=4n^2+4n+1\)

\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)

\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)chia hết cho 9

Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9

Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)

23 tháng 3 2018

2) Ta có: xy + 3x - y = 6 =>x(y+3) - y = 6 

=>x(y+3) - y - 3 = 3 =>x(y+3) - (y+3) = 3

=> (y+3)(x-1) =3

Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên

Ta có bảng sau:

y+3-3 -1 13
y-6-4-20
x-1-1-331
x0-242
26 tháng 2 2017

Sủa lại đề nha : \(\left|\left(3x+4\right)^2+\left|y-5\right|\right|=1\)

Vì \(\left(3x+4\right)^2\ge0\) ; \(\left|y-5\right|\ge0\)

\(\Rightarrow\left(3x+4\right)^2+\left|y-5\right|\ge0\)

\(\Rightarrow\left|\left(3x+4\right)^2+\left|y-5\right|\right|=\left(3x+4\right)^2+\left|y-5\right|\)

\(\Rightarrow\left(3x+4\right)^2+\left|y-5\right|=1=0+1=1+0\)

Nếu \(\left(3x+4\right)^2=0\) thì \(\left|y-5\right|=1\) => \(x=-\frac{4}{3}\) thì \(y=4;6\)

Nếu \(\left(3x+4\right)^2=1\) thì \(\left|y+5\right|=0\) =? \(x=-\frac{5}{3};-1\) thì y = \(-5\)

=> cặp ( x;y ) thỏa mãn đề bài là ( -4/3; 4 ); (-4/3;6) ; (-5/3;-5) ; (-1;5)

Mà x ; y nguyên => ( x;y ) = ( -1;5 )

Vậy có 1 cặp (x;y) thỏa mãn

26 tháng 2 2018

Đáp án đúng là 1 đó bạn . Mk làm rùi

13 tháng 12 2016

CÓ:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}-\frac{3}{xyz}=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

\(A=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\cdot\frac{3}{xyz}=3\)