\(\frac{2\times2012}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+....+\frac{1}{1+2+3+4+...+2012}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{1+\frac{2011}{2}+1+\frac{2010}{3}+1+...+\frac{1}{2012}+1+1}{\frac{1}{2}+...+\frac{1}{2013}}\)
A=\(\frac{\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}}{\frac{1}{2}+...+\frac{1}{2013}}\)
A=\(\frac{2013\left(\frac{1}{2}+...+\frac{1}{2013}\right)}{\frac{1}{2}+...+\frac{1}{2013}}\)
A=2013
Mà 2013: 3 = 671
Vậy A : 3 dư 0 hay\(A⋮3\)
Xét tử:
\(2012+\frac{2011}{2}+\frac{2010}{3}+\frac{2009}{4}+...+\frac{1}{2012}\)
= \(\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1\)
= \(\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}\)
= \(2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)\)
Thay vào ta có:
A = \(\frac{2013\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}\)
=> A = 2013
Mà 2013 chia hết cho 3
=> A chia hết cho 3
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
http://d.f24.photo.zdn.vn/upload/original/2016/02/14/10/03/3204324726_616688374_574_574.jpg
= \(\frac{1}{\sqrt{2}\left(\sqrt{2}+1\right)}+\frac{1}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{1}{\sqrt{2012}.\sqrt{2013}\left(\sqrt{2013}+\sqrt{2012}\right)}\)
= \(\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{\sqrt{2\left(\sqrt{2}+1\right)}}+...+\frac{\left(\sqrt{2013}-\sqrt{2012}\right)\left(\sqrt{2013}+\sqrt{2012}\right)}{\sqrt{2012}\sqrt{2013}\left(\sqrt{2012}+\sqrt{2013}\right)}\)
= \(\frac{\sqrt{2}-1}{\sqrt{2}}+...+\frac{\sqrt{2013}-\sqrt{2012}}{\sqrt{2012}\sqrt{2013}}\)
= \(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\)
= \(\frac{\sqrt{2013}-1}{\sqrt{2013}}=\frac{2013-\sqrt{2013}}{2013}\)
Ta có:
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2012}=\frac{1}{1\cdot2:2}+\frac{1}{2\cdot3:2}+...+\frac{1}{2012\cdot2013:2}\)
\(=\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+...+\frac{2}{2012\cdot2013}=2\left[\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2012\cdot2013}\right]\)
\(=2\left[\left[\frac{1}{1}-\frac{1}{2}\right]+\left[\frac{1}{2}-\frac{1}{3}\right]+\left[\frac{1}{3}-\frac{1}{4}\right]+...+\left[\frac{1}{2012}-\frac{1}{2013}\right]\right]\)
\(=2\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right]=2\left[1-\frac{1}{2013}\right]\)
\(=2\cdot\frac{2012}{2013}=\frac{4024}{2013}\)
Thế vào bài toán, ta có:
\(\frac{2\cdot2012}{\frac{4024}{2013}}=\frac{4024}{\frac{4024}{2013}}=2013\)