Tìm x,y nguyên dương thỏa mản
(2x+5).(y-3)=22
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+5\right)\left(y-3\right)=22\\ \Rightarrow\left(2x+5\right);\left(y-3\right)\inƯ\left(22\right)=\left\{1;2;11;22\right\}\\ TH1:2x+5=1\Rightarrow x=-2\left(loại\right);\left(y-3\right)=22\Rightarrow y=25\\ TH2:2x+5=2\Rightarrow x=-\dfrac{3}{2}\left(loại\right);\left(y-3\right)=11\Rightarrow y=14\\ TH3:2x+5=11\Rightarrow x=3;\left(y-3\right)=2\Rightarrow y=5\\ TH4:2x+5=22\Rightarrow x=\dfrac{17}{2}\left(loại\right);\left(y-3\right)=1\Rightarrow y=4\\Vậy:\left(x;y\right)=\left(3;5\right)\)
\(\left(4x-1\right)\left(y-3\right)=18\)
\(\Rightarrow\left(4x-1\right);\left(y-3\right)\in U\left(18\right)=\left\{1;2;3;6;9;18\right\}\left(x,y\inℤ^+\right)\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(\dfrac{1}{2};31\right);\left(\dfrac{3}{4};12\right);\left(1;9\right);\left(\dfrac{7}{4};6\right);\left(\dfrac{5}{2};5\right);\left(\dfrac{19}{4};4\right)\right\}\left(x,y\inℤ^+\right)\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;9\right)\right\}\left(x,y\inℤ^+\right)\)
\(\left(2x-1\right)\left(y-7\right)=22\)
\(\Rightarrow\left(2x-1\right);\left(y-7\right)\in\left\{1;2;11;22\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;29\right);\left(\dfrac{3}{2};18\right);\left(6;9\right);\left(\dfrac{23}{2};8\right)\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;29\right);\left(6;9\right)\right\}\left(x;y\inℤ^+\right)\)
Câu 1
1abc= 1000+abc
Ta có abc chia hết cho abc
Suy ra số dư của 1000:abc cũng là số dư của 1abc:abc
Suy ra 1000:abc dư 3
Suy ra 997:abc
Mà abc là số có 3 chữ số nên abc=997
a: =>-2x=90/91
hay x=-45/91
b: =>2x=-7
hay x=-7/2
c: ->-3x=-12
hay x=4
\(\left(2x+5\right)\left(y-3\right)=22\)
\(\Rightarrow\left(2x+5\right);\left(y-3\right)\in\left\{1;2;11;22\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(-2;25\right);\left(-\dfrac{3}{2};14\right);\left(3;5\right);\left(\dfrac{17}{2};4\right)\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(3;5\right)\right\}\left(\left(x;y\inℤ^+\right)\right)\)