Cho \(a_n=1+2+3+...+n\). Chứng minh rằng \(a_n+a_{n+1}\) là một số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có công thức quen thuộc:
\(a_n=1+2+3+..+n=\frac{n(n+1)}{2}\)
\(a_{n+1}=1+2+3+...+n+(n+1)=\frac{(n+1)(n+2)}{2}\)
Do đó:
\(a_n+a_{n+1}=\frac{n(n+1)}{2}+\frac{(n+1)(n+2)}{2}=\frac{(n+1)(n+n+2)}{2}=(n+1)(n+1)=(n+1)^2\) là số chính phương với mọi số tự nhiên $n\geq 1$
Vậy $a_n+a_{n+1}$ là số chính phương.
a,Ta có : an+1=1+2+....+n+(n+1)
\(\Rightarrow a_{n+1}=\frac{\left(n+2\right)\left[n:1+1\right]}{2}=\frac{\left(n+2\right)\left(n+1\right)}{2}\)
b,Ta lại có :\(\Rightarrow a=\frac{\left(n+1\right)\left[\left(n-1\right):1+1\right]}{2}=\frac{\left(n+1\right)\left(n\right)}{2}\)
\(\Rightarrow a_n+a_{n+1}=\frac{\left(n+2\right)\left(n+1\right)}{2}+\frac{\left(n+1\right)n}{2}\)
\(\Rightarrow a_n+a_{n+1}=\frac{\left(n+1\right)\left[\left(n+2\right)+n\right]}{2}=\frac{\left(n+1\right)\left(2n+2\right)}{2}\)
\(\Rightarrow a_n+a_{n+1}=\left(n+1\right)^2\)
=>ĐPCM
Thay : a(n) = x
Ta có : (x - 1 + x +1)/ (x+x-2) = 2x / (2x-2) = 2x / 2(x-1) = x/(x-1)
Gọi UCLN(x ; x-1) = d
=> x chia hết cho d; (x-1) chia hết cho d
=> 1 chia hết cho d => d = 1
=> x/(x-1) là phân số tối giản => dpcm
\(a_n=1+2+3+...+n=\dfrac{n\left(n+1\right)}{2}\)
\(\Rightarrow a_{n+1}=1+2+3+...+n+\left(n+1\right)=\dfrac{\left(n+1\right)\left(n+2\right)}{2}\)
\(\Rightarrow a_n+a_{n+1}=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n+1\right)\left(n+2\right)}{2}\)
\(=\dfrac{\left(n+1\right)}{2}.\left(n+n+2\right)=\dfrac{\left(n+1\right)}{2}.\left(2n+2\right)\)
\(=\dfrac{\left(n+1\right)}{2}.2\left(n+1\right)=\left(n+1\right)^2\)
\(\Rightarrow dpcm\)
ko bt