Cho tam giác ABC vuông tại A . Dường trung tuyến AM . Chứng minh rằng BM = CM = AM
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
21 tháng 12 2021
a: Xét tứ giác ADBM có
I là trung điểm của AB
I là trung điểm của DM
Do đó: ADBM là hình bình hành
mà AM=BM
nên ADBM là hình thoi
17 tháng 5 2022
vì tg ABC cân tại A
=> AM là đường phân giác
=>góc BAG = góc CAG (t/c đường phân giác )
xét tam giác ABG và tam giác AGC có
góc BAG = góc CAG (cmt)
AG : chung
AB = AC( gt )
=> tg AGB = tg AGC( C-G-C )
Trên tia đối của tia MA lấy điểm D sao cho \(MD=MA\). Khi đó xét 2 tam giác MAB và MDC, ta có \(MA=MD\) (cách vẽ), \(\widehat{AMB}=\widehat{DMC}\) và \(MB=MC\) (do AM là đường trung tuyến của tam giác ABC)
\(\Rightarrow\Delta MAB=\Delta MDC\left(c.g.c\right)\) \(\Rightarrow\widehat{MAB}=\widehat{MDC}\) \(\Rightarrow AB//CD\). Mà \(AB\perp AC\) nên \(AC\perp CD\) hay \(\widehat{ACD}=90^o\)
Đồng thời ta cũng có \(AB=CD\)
Xét 2 tam giác ABC và CDA, có AC là cạnh chung, \(\widehat{BAC}=\widehat{DCA}\left(=90^o\right)\) và \(AB=CD\left(cmt\right)\), suy ra \(\Delta ABC=\Delta CDA\left(c.g.c\right)\) \(\Rightarrow BC=AD\)
\(\Rightarrow\dfrac{1}{2}BC=\dfrac{1}{2}AD\) \(\Rightarrow MB=MA\)
Từ đó ta có \(MA=MB=MC=MD\), suy ra đpcm.