K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

A B C H M L P Q R .

GIẢ SỬ TAM GIÁC PQR LÀ TAM GIÁC ĐỀU

TA CÓ GÓC PRQ = 60

=> GÓC BMC + GÓC ACB = 120

=> GÓC BMC + GÓC \(\frac{ACB}{2}=120\)

=> GÓC BMC = \(120-\frac{ACB}{2}\)

NỐI HM

DO HM LÀ ĐƯỞNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN CỦA TAN GIÁC AHC VUÔNG TAI H

=> MH = AM = MC

=> GÓC HMC = 180 - 2 . GÓC ACB   VÀ   GÓC MHA = GÓC HAC = 90 - GÓC ACB

=> GÓC BMH = GÓC BMC - GÓC HMC = \(120-\frac{ACB}{2}-180+2.ACB\)

DO GÓC QPR = 60

=> GÓC MHA + GÓC BMH = 120

=> 90 - GÓC ACB + 120 - \(\frac{ACB}{2}-180+2.ACB=120\)

=> 30 + \(\frac{ACB}{2}=120\)

=> GÓC ACB = 90 . 2 = 180 ( VÔ LÍ )

VẬY TAM GIÁC PQR KHÔNG THỂ LÀ TAM GIÁC ĐỀU

                                                            

29 tháng 7 2017

A B C H M L P Q R 1 2

Cách 2:

Giả sử \(\Delta\)PQR là tam giác đều \(\Rightarrow\)^QPR=^PRQ=^PQR=600.

Xét \(\Delta\)PHC: ^PHC=900 \(\Rightarrow\)^C2=900-^QPR=300

Do CL là phân giác trong của ^ACB \(\Rightarrow\)^C1=^C2=300\(\Rightarrow\)^ACB=600 (1)

Ta có: ^PRQ=^MRC=600 (Đối đỉnh).

Xét \(\Delta\)RMC: ^RMC=1800-(^MRC+^C1)=1800-900=900 \(\Rightarrow\)RM\(⊥\)AC hay BM\(⊥\)AC

\(\Rightarrow\)BM là đường trung tuyến đồng thời là đường cao của \(\Delta\)ABC\(\Rightarrow\)\(\Delta\)ABC cân tại B (2)

Từ (1) và (2) \(\Rightarrow\)\(\Delta\)ABC đều \(\Rightarrow\)AB=BC=AC (Mâu thuẫn với đề bài)

\(\Rightarrow\)Giả sử là Sai. Vậy nên \(\Delta\)PQR không thể là tam giác đều.

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) O là giao điểm của ba đường trung trực của tam giác ABC nên O cách đều ba đỉnh của tam giác đó hay OA = OB = OC.

Xét hai tam giác vuông OAM và OBM có:

     OA = OB;

     OM chung.

Vậy \(\Delta OAM = \Delta OBM\)(cạnh huyền – cạnh góc vuông).

Suy ra: \(\widehat {OMA} = \widehat {BMO}\) ( 2 góc tương ứng).

Vậy MO là tia phân giác của góc BMA hay MO là tia phân giác của góc NMP (ba điểm M, A, P thẳng hàng và ba điểm M, B, N thẳng hàng).

b) MO là tia phân giác của góc NMP.

Tương tự ta có:

     NO là tia phân giác của góc MNP.

     PO là tia phân giác của góc MPN.

Vậy O là giao điểm của ba đường phân giác MO, NO, PO của tam giác MNP.