Cho tam giác ABC cân tại A.Về phía ngoài của tam giác vẽ 2 tam giác đều ABE,ACD
a) C/m BE=CD
b) Kẻ phân giác AH của tam giác cân ABC.C/m ba đường BE,CD,AH đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ΔABC cân ⇒ AB = AC; góc ABC = góc ACB
ΔABD đều ⇒ AD = BA = BD; góc ABD = góc BDA = góc DAB = 60 độ
ΔACE đều ⇒ AC = CE = AE; góc ACE = góc CEA = góc EAC = 60 độ
Xét ΔACD và ΔAEB có:
AC = AE (cmt)
góc DAC = góc EAB (=60 độ + góc BAC)
DA = BA (cmt)
AC = AB
⇒ ΔACD = ΔAEB (c.g.c)
⇒ CD = EB (2 cạnh tương ứng)
a)
Xét \(\Delta DAC\) và \(\Delta EAC\) có :
AD = AC
\(\widehat{DAC}=\widehat{EAB}\left(=60^0+\widehat{ABC}\right)\)
AB = AE
=> \(\Delta DAC\) = \(\Delta EAC\) (( c.g.c )
=> DC = BE
b) Gọi giao điểm của BC và DE là K
Ta c/m được \(\Delta DBK=\Delta ECK\left(g.c.g\right)\)
=> KB = KC
Tiếp tục c/m được \(\Delta AKB=\Delta AKC\left(c.g.c\right)\)
=> \(\widehat{BAK}=\widehat{CAK}\)
=> AK à tia phân giác của \(\widehat{BAC}\)
=> đpcm
a, Ta có BD//AC ( cùng vuông với AB )
BD=AC ( gt về các tam giác cân )
=> DBCA là hình bình hành => AD //BC (1)
Tương tự chứng minh BAEC là hình bình hành => AE//BC (2)
=> A,D,E thẳng hàng theo tiên đề ơ cơ lít :D
a) \(\widehat{BCE}=\widehat{BCA}+90^0\)
\(\widehat{KAC}=\widehat{HCA}+\widehat{H}=\widehat{BCA}+90^0\)
=> \(\widehat{BCE}=\widehat{KAC}\)
Xét \(\Delta BCE\)và \(\Delta KAC\)có :
BC = AK(gt)
\(\widehat{BCE}=\widehat{KAC}\)(cmt)
CE = AC(gt)
=> \(\Delta BCE=\Delta KAC\left(c.g.c\right)\)
=> \(\widehat{E_1}=\widehat{C_1}\)
Ta lại có : \(\widehat{C_1}+\widehat{C_2}=90^0\)nên \(\widehat{E_1}+\widehat{C_2}=90^0\)
=> BE \(\perp\)CK
b) Ta có \(\widehat{CAD}=\widehat{BCA}+90^0\)
\(\widehat{KAB}=\widehat{HBA}+\widehat{H}=\widehat{BCA}+90^0\)
=> \(\widehat{CAD}=\widehat{KAB}\)
Xét \(\Delta CAD\)và \(\Delta KAB\)có :
CA = KA(gt)
AD = AB(gt)
\(\widehat{CAD}=\widehat{KAB}\)(cmt)
=> \(\Delta CAD=\Delta KAB\left(c.g.c\right)\)
=> \(\widehat{D_1}=\widehat{B_1}\)
Ta lại có : \(\widehat{B_1}+\widehat{B_2}=90^0\)nên \(\widehat{D_1}+\widehat{B_2}=90^0\)
=> \(CD\perp BK\)
Ta lại có : \(AH\perp BC\)
Do đó \(\Delta KBC\)có KH,BE,CD là ba đường cao nên chung đồng quy
Vậy AH,BE,CD đồng quy