K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(sina+cosa)^2

=sin^2a+cos^2a+2*sina*cosa

=1+sin2a

29 tháng 7 2023

mấy cái dấu sao là gì v bn ???

 

20 tháng 5 2021

.jkilfo,o7m5ijk

15 tháng 6 2021

 Ta có \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin 5\alpha -2\sin \alpha .\cos 4\alpha -2\sin \alpha .\cos 2\alpha

=\sin 5\alpha -\left(\sin 5\alpha -\sin 3\alpha \right)-\left(\sin 3\alpha -\sin \alpha \right)

=\sin \alpha .

Vậy \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin \alpha

a) \(\cos^4\alpha-\sin^4\alpha=\left(\cos^2\alpha+\sin^2\alpha\right)\left(\cos^2\alpha-\sin^2\alpha\right)=\cos^2\alpha-\sin^2\alpha\)

\(2\cos^2\alpha-\left(\sin^2\alpha+\cos^2\alpha\right)=2\cos^2\alpha-1\)

b) \(\frac{\cos\alpha}{1-\sin\alpha}=\frac{1+\sin\alpha}{\cos\alpha}\)\(\Leftrightarrow\)\(\left(1-\sin\alpha\right)\left(1+\sin\alpha\right)=\cos^2\alpha\)

\(\Leftrightarrow\)\(1-\left(\sin^2\alpha+\cos^2\alpha\right)=0\)\(\Leftrightarrow\)\(1-1=0\) ( luôn đúng ) 

c) \(\frac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha.\cos\alpha}=\frac{2\cos\alpha.2\sin\alpha}{\sin\alpha.\cos\alpha}=4\)

um, hình như câu b) chỗ 1-.... đó hơi sai nếu viết từ bước trên xuống á bạn!

mình nghĩ là: sau dấu bằng đầu tiên, sau đó là:

\(=cos^2\alpha=1-sin^2\alpha\)(luôn đúng)

CẢM ƠN bạn nhiều lắm luôn nha!!!!!

16 tháng 3 2020

1.

\(\frac{1-2sin\alpha cos\alpha}{sin^2\alpha-cos^2\alpha}=\frac{sin\alpha-cos\alpha}{sin\alpha+cos\alpha}\)

\(\Leftrightarrow\frac{1-2sin\alpha cos\alpha}{\left(sin\alpha-cos\alpha\right)\left(sin\alpha+cos\alpha\right)}=\frac{sin\alpha-cos\alpha}{sin\alpha+cos\alpha}\)

\(\Leftrightarrow1-2sin\alpha cos\alpha=\left(sin\alpha-cos\alpha\right)^2\)

\(\Leftrightarrow1-2sin\alpha cos\alpha=sin^2\alpha+cos^2\alpha-2sin\alpha cos\alpha\)

\(\Leftrightarrow1-2sin\alpha cos\alpha=1-2sin\alpha cos\alpha\left(đpcm\right)\)

17 tháng 3 2020

Bạn giúp mình bài này luôn với nha

Cho tam giác ABC ( AB < AC ) nội tiếp trong đường tròn (O) . Kẻ đường cao AH của tam giác ABC. Gọi P, Q lần lượt là chân đường vuông góc kẻ từ H xuống AB, AC .

1) Chứng minh rằng BCQP là tứ giác nội tiếp.

2) Hai đường thẳng BC,QP cắt nhau tại M . Chứng minh rằng: MH^2 = MB.MC .

3) Đường thẳng MA cắt đường tròn (O) tại K ( K khác A ). Gọi I là tâm đường tròn ngoại tiếp tứ giác BCQP . Chứng minh rằng I , H, K thẳng hàng.

27 tháng 7 2019

1) \(\frac{1-2\sin\alpha\cdot\cos\alpha}{sin^2\alpha-\cos^2\alpha}=\frac{sin^2\alpha+\cos^2\alpha-2sin\alpha\cdot\cos\alpha}{sin^2\alpha-\cos^2\alpha}\)\(=\frac{\left(sin\alpha-\cos\alpha\right)^2}{sin^2\alpha-\cos^2\alpha}=\frac{sin\alpha-\cos\alpha}{sin\alpha+\cos\alpha}\)(đpcm)

2) \(cos^4\alpha+sin^2\alpha\cdot cos^2\alpha+sin^2\alpha\)

\(=cos^4\alpha+\left(1-cos^2\alpha\right)\cdot cos^2\alpha+sin^2\alpha\)

\(=cos^4\alpha+cos^2\alpha-cos^4\alpha+sin^2\alpha\)

\(=cos^2\alpha+sin^2\alpha=1\)(đpcm)

NV
8 tháng 2 2022

\(A=\dfrac{\dfrac{3sina}{sina}-\dfrac{cosa}{sina}}{\dfrac{2sina}{sina}+\dfrac{cosa}{sina}}=\dfrac{3-cota}{2+cota}=\dfrac{3-3}{2+3}=0\)

\(B=\dfrac{\dfrac{sin^2a}{sin^2a}-\dfrac{3sina.cosa}{sin^2a}+\dfrac{2}{sin^2a}}{\dfrac{2sin^2a}{sin^2a}+\dfrac{sina.cosa}{sin^2a}+\dfrac{cos^2a}{sin^2a}}=\dfrac{1-3cota+2\left(1+cot^2a\right)}{2+cota+cot^2a}=\dfrac{1-3.3+2\left(1+3^2\right)}{2+3+3^2}=...\)

8 tháng 2 2022

a. \(A=\dfrac{3sin\alpha-cos\alpha}{2sin\alpha+cos\alpha}=\dfrac{3\dfrac{sin\alpha}{cos\alpha}-1}{2\dfrac{sin\alpha}{cos\alpha}+1}=\dfrac{3.\dfrac{1}{3}-1}{2.\dfrac{1}{3}+1}=0\)

b.\(B=\dfrac{sin^2\alpha-3sin\alpha.cos\alpha+2}{2sin^2\alpha+sin\alpha.cos\alpha+cos^2\alpha}\)\(=\dfrac{1-\dfrac{3cos\alpha}{sin\alpha}+\dfrac{2}{sin^2\alpha}}{2+\dfrac{cos\alpha}{sin\alpha}+\dfrac{cos^2\alpha}{sin^2\alpha}}=\dfrac{1-3.3+\dfrac{2}{sin^2\alpha}}{2+3+3^2}\)

Mà \(\dfrac{cos\alpha}{sin\alpha}=3,cos^2\alpha+sin^2\alpha=1\Rightarrow sin^2\alpha=\dfrac{1}{10}\)

\(B=\dfrac{1-3.3+\dfrac{2}{\dfrac{1}{10}}}{2+3+3^2}=\dfrac{6}{7}\)

\(\Leftrightarrow\left(sina\right)^2-\left(cosa-1\right)^2=2cosa\left(1-cosa\right)\)

\(\Leftrightarrow1-cos^2a-cos^2a+2cosa-1=2cosa-2cos^2a\)

\(\Leftrightarrow-2cos^2a+2cosa=-2cos^2a+2cosa\)(đúng)

1 tháng 5 2018

\(\sin^4x.\sin^2x+\cos^4x.\cos^2x-\left(\sin^4x+\cos^4x+\dfrac{1}{2}\sin^4x+\dfrac{1}{2}\cos^4x-\dfrac{3}{2}\right)-1=-\sin^4x.\left(1-\sin^2x\right)-cos^4x.\left(1-\cos^2x\right)-\dfrac{1}{2}\left(\sin^4x+\cos^4x\right)+\dfrac{1}{2}=-\left(\sin^4x.\cos^2x+\cos^4x.\sin^2x\right)-\dfrac{1}{2}\left(\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x\right)+\dfrac{1}{2}=-\left(\sin^2x.\cos^2x.\left(\sin^2x+\cos^2x\right)\right)-\dfrac{1}{2}.\left(1-2\sin^2x.\cos^2x\right)+\dfrac{1}{2}=-\sin^2x.\cos^2x+\sin^2x.\cos^2x-\dfrac{1}{2}+\dfrac{1}{2}=0\)