K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

3^(3*15)+4.4^(2*51)

(27)^15+4.16^51

có 27 chia 13 dư 1 

16 chia 13 dư 3 =>4.16^51 chia 3 dư 12

1+12=13 vậy chia hết cho 13

27 chia 11 dư 5

16 chia 11 dư 5

5+5*4=25 ko chia cho 11

2 tháng 8 2017

hay nhưng viết mỏi tay

31 tháng 7 2016

Theo mình thì giải thế này:

Lũy thừa của 3 và 4 lên thì chỉ chia hết cho chúng lũy thừa lên hoặc chúng.

Mà 3 và 4 nguyên tố cùng nhau với 11 nên không chia hết cho 11.

Vậy ta có điều cần chứng minh.

Chúc em học tốt^^

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

18 tháng 12 2014

chia het cho 3 thi cu nhom 2 so hang lien tiep roi dat 2 ra ngoai là duoc

chia het cho 7 thi nhom ba so hang lien tiep roi dat 2 ra ngoai la duoc.

chia het cho 5 thi nhom 4 so hang lien tiep roi dat 2 ra ngoai cung dc.  

ma 3,5,7 la cac so nguyen to cung nhau và 3.5.7 = 150

vay A chia het 150. 

A = 2+22+23+...+260=(2+22) +(23+24)+...+(259+260)=2(1+2)+22(1+2)+...+259(1+2)=3.2+3.22+...+3.259 chia het cho ba

con lai tuong tu theo huong dan nhe. goog luck

2 tháng 3 2017

minh sai ở phần dưới rồi

18 tháng 1 2021

a)

Ta có: \(222^{333}=\left(222^3\right)^{111}\equiv1^{111}=1\left(mod13\right)\)

\(\Rightarrow222^{333}+333^{222}\equiv1+333^{222}=1+\left(333^2\right)^{111}\)

\(\equiv1+12^{111}\equiv1+12^{110}\cdot12\equiv1+\left(12^2\right)^{55}\cdot12\)

\(\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)

Vậy $222^{333}+333^{222}$ chia hết cho $13.$

b) Ta có:

\(3^{105}\equiv\left(3^3\right)^{35}\equiv1^{35}\equiv1\) (mod13)

\(\Rightarrow3^{105}+4^{105}\equiv1+4^{105}\equiv1+\left(4^3\right)^{35}\)

\(\equiv1+12^{35}\equiv1+\left(12^2\right)^{17}\cdot12\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)

Vậy $3^{105}+4^{105}$ chia hết cho $13.$

Lại có:

\(3^{105}\equiv\left(3^3\right)^{35}\equiv5^{35}\equiv\left(5^5\right)^7\equiv1\left(mod11\right)\)

\(4^{105}\equiv\left(4^3\right)^{35}\equiv9^{35}\equiv\left(9^5\right)^7\equiv1\left(mod11\right)\)

Từ đây:\(3^{105}+4^{105}\equiv1+1\equiv2\left(mod11\right)\)

Vậy $3^{105}+4^{105}$ không chia hết cho $11.$

P/s: Rất lâu rồi không giải, không chắc.

6 tháng 7 2019

Ta có : 52014 - 52013 + 52012

        = 52012.(52 - 5 + 1)

        = 52012.21

        = 52011.5.21

        = 52011.105 \(⋮\)105

=> 52014 - 52013 + 52012 \(⋮\)105

6 tháng 7 2019

\(5^{2014}-5^{2013}+5^{2012}\)

\(5^{2011}.\left(5^3-5^2+5\right)\)

\(5^{2011}.105⋮105\)(ĐPCM)