K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2023

Khi P sai và Q đúng, mệnh đề P=>Q được coi là đúng.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

+) Mệnh đề R: “Nếu ABC là tam giác đều thì nó có hai góc bằng \({60^o}\)” có dạng \(P \Rightarrow Q\), với

P: “ABC là tam giác đều” và Q: “Tam giác ABC có hai góc bằng \({60^o}\)”

Ta thấy khi P đúng thì Q cũng đúng. Do đó \(P \Rightarrow Q\) đúng hay R đúng.

+) Mệnh đề T: “Nếu \(a = 2\) thì \({a^2} - 4 = 0\)” có dạng \(P \Rightarrow Q\), với:

P: “\(a = 2\)” và Q: “\({a^2} - 4 = 0\)”.

Ta thấy khi P đúng thì Q cũng đúng. Do đó \(P \Rightarrow Q\) đúng hay T đúng.

b) Mệnh đề \(Q \Rightarrow P\) của hai mệnh đề trên là:

“Nếu ABC có hai góc bằng \({60^o}\) thì nó là tam giác đều”, đúng.

“Nếu \({a^2} - 4 = 0\) thì \(a = 2\)” sai (vì thiếu nghiệm \(a =  - 2\)).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

(1) “Nếu ABC là tam giác đều thì nó là tam giác cân” là mệnh đề đúng.

(2) “Nếu 2a – 4 >0 thì a > 2” là mệnh đề đúng.

b) Trong mệnh đề (1) “Nếu ABC là tam giác đều thì nó là tam giác cân

P: “ABC là tam giác đều”

Q: “ABC là tam giác cân”

Trong mệnh đề (2) “Nếu 2a – 4 > 0 thì a > 2

P: “2a – 4 > 0”

Q: “a > 2”

Chú ý

Từ “” trong mênh đề (1) được hiểu là “ABC”. Do đó khi chỉ ra mệnh đề Q, ta dùng “ABC” thay cho “nó” để mệnh đề được rõ nghĩa.

9 tháng 2 2017

a) Xét P(n) : “3n < n + 100”:

+ Với n = 1, P(1) trở thành: “31 < 1 + 100”. Mệnh đề đúng vì 31 = 3 < 1 + 100 = 101.

+ Với n = 2, P(2) trở thành: “32 < 2 + 100”. Mệnh đề đúng vì 32 = 9 < 2 + 100.

+ Với n = 3, P(3) trở thành: “33 < 3 + 100”. Mệnh đề đúng vì 33 = 27 < 3 + 100.

+ Với n = 4, P(4) trở thành: “34 < 4 + 100”. Mệnh đề đúng vì 34 = 81 < 4 + 100.

+ Với n = 5, P(5) trở thành: “35 < 5 + 100”. Mệnh đề sai vì 35 = 243 > 5 + 100.

Xét Q(n): “2n > n”.

+ Với n = 1, Q(1) trở thành: “21 > 1”. Mệnh đề đúng vì 21 = 2 > 1.

+ Với n = 2, Q(2) trở thành: “22 > 2”. Mệnh đề đúng vì 22 = 4 > 2.

+ Với n = 3, Q(3) trở thành: “23 > 3”. Mệnh đề đúng vì 23 = 8 > 3.

+ Với n = 4, Q(4) trở thành: “24 > 4”. Mệnh đề đúng vì 24 = 16 > 4.

+ Với n = 5, Q(5) trở thành: “25 > 5”. Mệnh đề đúng vì 25 = 32 > 5.

b)

+ Nhận thấy P(n) không đúng với mọi n ∈ N* (sai với n = 5).

+ Với mọi n ∈ N*, Q(n) luôn đúng.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

P: “tam giác ABC vuông tại A”

Q: “tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)”

+) Mệnh đề \(Q \Rightarrow P\) là “Nếu tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)thì tam giác ABC vuông tại A”

+) Từ định lí Pytago, ta có:

Tam giác ABC vuông tại A thì \(A{B^2} + A{C^2} = B{C^2}\)

Và: Tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\) thì vuông tại A.

Do vậy, hai mệnh đề “\(P \Rightarrow Q\)” và “\(Q \Rightarrow P\)” đều đúng.

25 tháng 4 2017

Hướng dẫn trả lời:

Chọn C vì:

Mệnh đề I sai vì không có căn bậc hai của số âm

Mệnh đề IV sai vì √100 = 10 (căn bậc hai số học)

Các mệnh đề II và III đúng

20 tháng 7 2019

Đáp án C

Mệnh đề đúng P ⇔ Q có thể được phát biểu theo các ngôn ngữ khi và chỉ khi, nếu và chỉ nếu, điều kiện cần và đủ nên đáp án C là sai.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

+) Mệnh đề \(P \Rightarrow Q\) là: “Vì tam giác ABC đều nên tam giác ABC cân và có một góc bằng \({60^o}\)”.

+) Mệnh đề \(Q \Rightarrow P\) là: “Tam giác ABC cân và có một góc bằng \({60^o}\) suy ra tam giác ABC đều”.

Dễ thấy cả hai mệnh đề trên đều đúng.

+) Mệnh đề tương đương: (dùng một trong các cách sau:)

“Tam giác ABC đều tương đương tam giác ABC cân và có một góc bằng \({60^o}\)”

“Tam giác ABC đều là điều kiện cần và đủ để có tam giác ABC cân và có một góc bằng \({60^o}\)”

“Tam giác ABC đều khi và chỉ khi tam giác ABC cân và có một góc bằng \({60^o}\)”

“Tam giác ABC đều nếu và chỉ nếu tam giác ABC cân và có một góc bằng \({60^o}\)”