K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: b=0

=>|a|=0^2021+1=1

=>a=1 hoặc a=-1

c: a=0

=>b^2021+1=0

=>b^2021=-1

=>b=-1

8 tháng 1 2017

Câu 1:Vì a.b<0 suy ra a.b là số nguyên âm = số âm nhân số dương 

Mà a<b  suy ra là số nguyên âm và b là số nguyên dương 

 Vậy a là số nguyên âm,b là số nguyên dương  và a,b khác dấu{a,b trái dấu}

Câu 2 

A, a,b là số nguyên dương suy ra b là số nguyên dương

B, a.b là số nguyên âm 

Suy ra a,b là một số nguyên âm và một số nguyên dương hoặc a,b là một số nguyên dương hoặc một số nguyên âm 

Vậy b là số nguyên âm nếu a dương còn b là số nguyên dương nếu a âm

C,Suy ra b là số nguyên âm hoặc là số nguyên duong

19 tháng 8 2016

1. Với a, b ∈ Z, b> 0

- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0

- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0

Tổng quát: Số hữu tỉ  \(\frac{a}{b}\) (a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0

2. Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y

                                                  

19 tháng 8 2016

ah ! xin lỗi ha, toán lớp 7 đoá !hihi

NV
25 tháng 2 2021

Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)

TH1: \(a;c\) trái dấu 

Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)

Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)

Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.

Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)

\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)

Mà a; c trái dấu nên:

- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)

\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)

\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)

Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu

\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)

Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)

4 tháng 3 2020

Ta có: \(\left|a\right|\ge0\)

\(\Rightarrow b^{2005}\ge0\)

\(\Leftrightarrow b\ge0\)

Vậy b  mang dấu +, a mang dấu -

3 tháng 4 2016

Vì a.b<0 nên a,b khác dấu

*)Nếu a dương, b âm

mà |a|=|b|5

nên |a|=|-b|5 hay a=-b5

*)Nếu a âm, b dương

mà |a|=|b|5

nên |-a|=|b|5 hay a=b5(loại)

Vậy dấu của a là dương, còn b là âm

vì a*b<0suy ra a,b khác dấu

nếu a dương b âm thì a=-b^5 mà  5 là số lẻ lẽ suy ra -b^5 âm (vô lí)

nếu a âm b dương thì a=b^5 mà b dương nên b dương suy ra bài toán đúng khi a âm ,b dương

vậy dấu của a là - dấu của b là +

14 tháng 1 2017

ta thấy |a|\(\ge0\forall a\)

\(\Rightarrow b^{2005}\ge0\forall b\)

Vậy dấu của a;b là dấu "+"

12 tháng 2 2019

tớ k bt nó đúng hay sai nhá

t có:|a|=b^2005

nếu |a| là âm thì =a

nếu |a| là dương thì =-a

nếu b âm thì b âm

nếu b dương thì b dương

sai thì đừng trách !!!

\(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)

\(\Leftrightarrow\dfrac{a\left(y+z\right)}{abc}=\dfrac{b\left(z+x\right)}{abc}=\dfrac{c\left(x+y\right)}{abc}\)

\(\Leftrightarrow\dfrac{\left(x+y\right)-\left(z+x\right)}{ab-ac}=\dfrac{y-z}{a\left(b-c\right)}\)

\(\Leftrightarrow\dfrac{\left(y+z\right)-\left(x+y\right)}{bc-ab}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{\left(z+x\right)-\left(y+z\right)}{ac-bc}=\dfrac{x-y}{c\left(a-b\right)}\)

\(\Rightarrow\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\left(đpcm\right)\)