x^2-5x+6
x^2-7x+12
x^2+x-12
x^2-9x+20
2x^2-3x-2
4x^2-7x-2
4x^2+15x+9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\\frac{-1-\sqrt{5}}{4}\le x\le-\frac{1}{8}\end{matrix}\right.\)(Có thể chưa chính xác)
\(12x^2+16x+1=2\sqrt{24x^3+12x^2-6x}+4\sqrt{x^2-x}+4\sqrt{8x^3+9x^2+x}\)
Áp dụng AM-GM:
\(2\sqrt{24x^3+12x^2-6x}=2\sqrt{6x\left(4x^2+2x-1\right)}\le6x+\left(4x^2+2x-1\right)=4x^2+8x-1\left(1\right)\)
\(4\sqrt{x^2-x}=2\sqrt{1.\left(4x^2-4x\right)}\le4x^2-4x+1\left(2\right)\)
\(4\sqrt{8x^3+9x^2+x}=2\sqrt{\left(4x^2+4x\right)\left(8x+1\right)}\le\left(4x^2+4x\right)+\left(8x+1\right)=4x^2+12x+1\left(3\right)\)
Cộng \(\left(1\right),\left(2\right),\left(3\right)\), ta có: \(VP\le VT\)
Dấu ''='' xảy ra khi :
\(\left\{{}\begin{matrix}4x^2+2x-1=6x\\4x^2-4x=1\\4x^2+4x=8x+1\end{matrix}\right.\)\(\Rightarrow4x^2-4x-1=0\)
\(\Rightarrow x=\frac{1\pm\sqrt{2}}{2}\) (t/m ĐKXĐ)
Lời giải:
\(P(x)=x(x+2)(x+3)(x+5)-7\)
\(=[x(x+5)][(x+2)(x+3)]-7\)
\(=(x^2+5x)(x^2+5x+6)-7\)
\(=a(a+6)-7\) (đặt \(x^2+5x=a\) )
\(=a^2+6a-7=a^2-a+7a-7\)
\(=a(a-1)+7(a-1)=(a-1)(a+7)\)
\(=(x^2+5x-1)(x^2+5x+7)\)
-----------------
\(Q(x)=(4x-2)(10x+4)(5x+7)(2x+1)+17\)
\(=4(2x-1)(5x+2)(5x+7)(2x+1)+17\)
\(=4[(2x-1)(5x+7)][(5x+2)(2x+1)]+17\)
\(=4(10x^2+9x-7)(10x^2+9x+2)+17\)
\(=4a(a+9)+17\) (đặt \(10x^2+9x-7=a\)
\(=4a^2+36a+17=(2a+9)^2-8^2\)
\(=(2a+9-8)(2a+9+8)=(2a+1)(2a+17)\)
\(=(20x^2+18x-13)(20x^2+18x+3)\)
\(R(x)=(3x+2)(3x-5)(x-1)(9x+10)+24x^2\)
\(=[(3x+2)(3x-5)][(x-1)(9x+10)]+24x^2\)
\(=(9x^2-9x-10)(9x^2+x-10)+24x^2\)
\(=(a-9x)(a+x)+24x^2\) (đặt \(9x^2-10=a\) )
\(=a^2-8ax+15x^2=(a^2-5ax)-(3ax-15x^2)\)
\(=a(a-5x)-3x(a-5x)=(a-3x)(a-5x)\)
\(=(9x^2-3x-10)(9x^2-5x-10)\)
--------------------------
\(H(x)=(x-18)(x-7)(x+35)(x+90)-67x^2\)
\(=[(x-18)(x+35)][(x-7)(x+90)]-67x^2\)
\(=(x^2+17x-630)(x^2+83x-630)-67x^2\)
\(=a(a+66x)-67x^2\) (đặt \(x^2+17x-630=a\) )
\(=a^2-ax+67ax-67x^2\)
\(=a(a-x)+67x(a-x)=(a-x)(a+67x)\)
\(=(x^2+16x-630)(x^2+84x-630)\)
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
3: \(15x^3+29x^2-8x-12\)
\(=15x^3+30x^2-x^2-2x-6x-12\)
\(=\left(x+2\right)\left(15x^2-x-6\right)\)
\(=\left(x+2\right)\left(15x^2-10x+9x-6\right)\)
\(=\left(x+2\right)\left(3x-2\right)\left(3x+5\right)\)
5: \(x^3+9x^2+26x+24\)
\(=x^3+4x^2+5x^2+20x+6x+24\)
\(=\left(x+4\right)\left(x^2+5x+6\right)\)
\(=\left(x+4\right)\left(x+2\right)\left(x+3\right)\)
a) \(x^2\)\(-5x+6\)
=\(x^2\)\(-3x-2x+6\)
=\(x\left(x-3\right)-2\left(x-3\right)\)
=\(\left(x-2\right)\left(x-3\right)\)
b) \(3x^2\)\(+9x-30\)
=\(3x^2\)\(-6x+15x-30\)
=\(3x\left(x-2\right)+15\left(x-2\right)\)
=\(\left(x-2\right)\left(3x+15\right)\)
c)\(x^2\)\(-3x+2\)
=\(x^2\)\(-2x-x+2\)
=\(x\left(x-2\right)-\left(x-2\right)\)
=\(\left(x-2\right)\left(x-1\right)\)
d) \(12x^2\)\(+7x-12\)
=\(12x^2\)\(-9x+16x-12\)
=\(3x\left(4x-3\right)+4\left(4x-3\right)\)
=\(\left(3x+4\right)\left(4x-3\right)\)
e) \(15x^2\)\(+7x-2\)
=\(15x^2\)\(-3x+10x-2\)
=\(3x\left(5x-1\right)+2\left(5x-1\right)\)
=\(\left(3x+2\right)\left(5x-1\right)\)
f) \(a^2\)\(-5a-14\)
=\(a^2\)\(-7a+2a-14\)
=\(a\left(a-7\right)+2\left(a-7\right)\)
=\(\left(a+2\right)\left(a-7\right)\)
g) \(x^2\)\(-\left(a+b\right)x+ab\)
=\(x^2\)\(-ax-bx+ab\)
=\(x\left(x-a\right)-b\left(x-a\right)\)
=\(\left(x-a\right)\left(x-b\right)\)
Đề yêu cầu gì em?
\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
\(x^2-7x+12=\left(x-2\right)\left(x-5\right)\)
\(x^2+x-12=\left(x-5\right)\left(x+6\right)\)
\(x^2-9x+20=\left(x-4\right)\left(x-5\right)\)