K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi A,B lần lượt là giao của (d) với trục Ox và Oy

Tọa độ A là:

y=0 và (2m+1)x-1=0

=>x=1/(2m+1) và y=0

=>OA=1/|2m+1|

Tọa độ B là:

x=0 và y=-1

=>OB=1

Theo đề, ta có: S OAB=1/2

=>1/2*OA*OB=1/2

=>1/|2m+1|=1

=>|2m+1|=1

=>2m+1=1 hoặc 2m+1=-1

=>m=-1 hoặc m=0

8 tháng 7 2018

d   ∩   O y   =   B ⇒     x B   =   0 ⇒     y B   =   − 1   ⇒   B   0 ;   − 1   ⇒ O B   =   − 1   =   1 d ∩     O x   =   A ⇒     y A   =   0   ⇔   k   –   2 x A   −   1   =   0     ⇔ x A = 1 k − 2 k ≠ 2    

  ⇒ A 1 k − 2 ; 0 ⇒ O A = 1 k − 2

  S Δ A O B = 1 2 O A . O B = 1 ⇔ 1 2 .1. 1 k − 2 = 1 ⇔ | k − 2 | = 1 2 ⇔ k = 5 2 k = 3 2 (tmdk)

Đáp án cần chọn là: D

11 tháng 3 2016

la 64

duyet nhanh di

13 tháng 12 2023

Gọi A,B lần lượt là giao điểm của (d) với trục Ox và Oy

Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(2m+1\right)x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x\left(2m+1\right)=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x=\dfrac{2}{2m+1}\end{matrix}\right.\)

=>\(A\left(\dfrac{2}{2m+1};0\right)\)

\(OA=\sqrt{\left(\dfrac{2}{2m+1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{2}{2m+1}\right)^2}=\dfrac{2}{\left|2m+1\right|}\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(2m+1\right)x-2=0\cdot\left(2m+1\right)-2=-2\end{matrix}\right.\)

=>B(0;-2)

\(OB=\sqrt{\left(0-0\right)^2+\left(-2-0\right)^2}=\sqrt{0+4}=2\)

Vì Ox\(\perp\)Oy

nên OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot2\cdot\dfrac{2}{\left|2m+1\right|}=\dfrac{2}{\left|2m+1\right|}\)

Để \(S_{OAB}=1\) thì \(\dfrac{2}{\left|2m+1\right|}=1\)

=>|2m+1|=2

=>\(\left[{}\begin{matrix}2m+1=2\\2m+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=1\\2m=-3\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}m=\dfrac{1}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\)

28 tháng 4 2018

d     ∩ O y   =   B   ⇒   x B   =   0   ⇒   y B   =   − 1   ⇒   B   0 ;   − 1     ⇒ O B   =   − 1   =   1 d   ∩   O x   =   A   ⇒   y A   =   0     2 m   +   1 x   –   1   =   0   ⇔ x A = 1 2 m + 1 m ≠ − 1 2      

⇒ A 1 2 m + 1 ; 0 ⇒ O A = 1 2 m + 1

S Δ A O B = 1 2 O A . O B = 1 2 .1. 1 2 m + 1 = 1 2 ⇔ | 2 m + 1 | = 1 ⇔ m = 0 m = − 1

Đáp án cần chọn là: D

25 tháng 1 2022

\(\left(m+1\right)x+\left(m-2\right)y=3\)\(\left(m\ne-1;m\ne2\right)\)

\(y=0\Leftrightarrow x=\dfrac{3}{m+1}\Rightarrow A\left(\dfrac{3}{m+1};0\right)\Rightarrow OA=\left|\dfrac{3}{m+1}\right|\)

\(x=0\Leftrightarrow y=\dfrac{3}{m-2}\Leftrightarrow B\left(0;\dfrac{3}{m-2}\right)\Rightarrow OB=\left|\dfrac{3}{m-2}\right|\)

\(S_{_{ }^{ }\Delta ABO}=\dfrac{9}{2}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}.\dfrac{9}{\left|m+1\right|.\left|m-2\right|}\Leftrightarrow\dfrac{1}{\left|m+1\right|.\left|m-2\right|}=9\Leftrightarrow\left|m+1\right|.\left|m-2\right|=9\Leftrightarrow\left(m+1\right)^2.\left(m-2\right)^2-81=0\Leftrightarrow\left(m^2-m-11\right)\left(m^2-m+7\right)=0\Leftrightarrow\left[{}\begin{matrix}m^2-m-11=0\Leftrightarrow m=\dfrac{1\pm3\sqrt{5}}{2}\left(tm\right)\\m^2-m+7=0\left(vô-nghiệm\right)\end{matrix}\right.\)

\(\Rightarrow m=\dfrac{1\pm3\sqrt{5}}{2}\)

25 tháng 1 2022

Cho x = 0 => \(y=\dfrac{3}{m-2}\)

vậy d cắt Oy tại A(0;3/m-2) => Oy = \(\left|\dfrac{3}{m-2}\right|\)

Cho y = 0 => \(x=\dfrac{3}{m+1}\)

vậy d cắt Ox tại B(3/m+1;0) => Ox = \(\left|\dfrac{3}{m+1}\right|\)

Ta có : \(S_{OAB}=\dfrac{1}{2}.OB.OA=\dfrac{1}{2}.\dfrac{9}{\left|\left(m+1\right)\left(m-2\right)\right|}=\dfrac{9}{2}\)

\(\Leftrightarrow\left|\left(m+1\right)\left(m-2\right)\right|=1\Leftrightarrow\left[{}\begin{matrix}m^2-m-3=0\\m^2-m-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1+\sqrt{13}}{2};m=\dfrac{1-\sqrt{13}}{2}\\m=\dfrac{1+\sqrt{5}}{2};m=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)