K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ĐKXĐ: sin 2x<>1

=>2x<>pi/2+k2pi

=>x<>pi/4+kpi

\(\dfrac{cos2x}{sin2x-1}=0\)

=>cos2x=0

=>2x=pi/2+kpi

=>x=pi/4+kpi/2

Kết hợp ĐKXĐ, ta được:

x=3/4pi+k2pi hoặc x=7/4pi+k2pi

b: cos(sinx)=1

=>sin x=kpi

=>sin x=0

=>x=kpi

c: \(2\cdot sin^2x-1+cos3x=0\)

=>cos3x+cos2x=0

=>cos3x=-cos2x=-sin(pi/2-2x)=sin(2x-pi/2)

=>cos3x=cos(pi/2-2x+pi/2)=cos(pi-2x)

=>3x=pi-2x+k2pi hoặc 3x=-pi+2x+k2pi

=>x=-pi+k2pi hoặc x=pi/5+k2pi/5

e: cos3x=-cos7x

=>cos3x=cos(pi-7x)

=>3x=pi-7x+k2pi hoặc 3x=-pi+7x+k2pi

=>x=pi/10+kpi/5 hoặc x=pi/4-kpi/2

2 tháng 12 2018

28 tháng 9 2020

@Nguyễn Việt Lâm giúp em với ạ

NV
29 tháng 9 2020

a/ \(4cos^3x-3cosx-4\left(2cos^2x-1\right)+3cosx-4=0\)

\(\Leftrightarrow4cos^3x-8cos^2x=0\)

\(\Leftrightarrow4cos^2x\left(cosx-2\right)=0\)

\(\Leftrightarrow cosx=0\Rightarrow x=\frac{\pi}{2}+k\pi\)

\(0< \frac{\pi}{2}+k\pi< 14\Rightarrow-\frac{1}{2}< k< \frac{14-\frac{\pi}{2}}{\pi}\Rightarrow k=\left\{0;1;2;3\right\}\)

\(\Rightarrow x=\left\{\frac{\pi}{2};\frac{3\pi}{2};\frac{5\pi}{2};\frac{7\pi}{2}\right\}\)

b/ Bạn coi lại đề, cái ngoặc thứ 2 thiếu \(\left(2cos\left(???\right)+cosx\right)\)

c/ Bạn coi lại đề, có 2 số hạng \(cos2x\) xuất hiện ở vế trái, cấp 3 chắc ko ai cho kiểu vậy đâu, nếu đúng thế thì người ta cộng luôn thành \(2cos2x\) cho rồi

b: \(\Leftrightarrow2\cdot\cos2x\cdot\cos x+2\cdot\sin x\cdot\cos2x=\sqrt{2}\cdot\cos2x\)

\(\Leftrightarrow2\cdot\cos2x\left(\sin x+\cos x\right)=\sqrt{2}\cdot\cos2x\)

\(\Leftrightarrow\sqrt{2}\cdot\cos2x\cdot\left[\sqrt{2}\cdot\sqrt{2}\cdot\sin\left(x+\dfrac{\Pi}{4}\right)-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\cos2x=0\\\sin\left(x+\dfrac{\Pi}{4}\right)=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\Pi}{2}+k\Pi\\x+\dfrac{\Pi}{4}=\dfrac{\Pi}{6}+k2\Pi\\x+\dfrac{\Pi}{4}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\)

\(\Leftrightarrow x\in\left\{\dfrac{\Pi}{4}+\dfrac{k\Pi}{2};\dfrac{-1}{12}\Pi+k2\Pi;\dfrac{7}{12}\Pi+k2\Pi\right\}\)

c: \(\Leftrightarrow2\cdot\sin2x\cdot\cos x+\sin2x=2\cdot\cos2x\cdot\cos x+\cos2x\)

\(\Leftrightarrow\sin2x\left(2\cos x+1\right)=\cos2x\left(2\cos x+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\cos2x=\sin\left(\dfrac{\Pi}{2}-2x\right)\\\cos x=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\\\\x=-\dfrac{2}{3}\Pi+k2\Pi\\x=\dfrac{2}{3}\Pi+k2\Pi\end{matrix}\right.\)

NV
29 tháng 7 2021

a.

\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=cos2x+\dfrac{1}{16}\)

\(\Leftrightarrow1-\dfrac{3}{4}sin^22x=cos2x+\dfrac{1}{16}\)

\(\Leftrightarrow\dfrac{15}{16}-\dfrac{3}{4}\left(1-cos^22x\right)=cos2x\)

\(\Leftrightarrow\dfrac{3}{4}cos^22x-cos2x+\dfrac{3}{16}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\dfrac{4-\sqrt{7}}{6}\\cos2x=\dfrac{4+\sqrt{7}}{6}>1\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x=\pm\dfrac{1}{2}arccos\left(\dfrac{4-\sqrt{7}}{6}\right)+k\pi\)

NV
29 tháng 7 2021

b.

\(\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)^2-2sin^2\dfrac{x}{2}cos^2\dfrac{x}{2}=\dfrac{5}{2}-2sinx\)

\(\Leftrightarrow1-\dfrac{1}{2}sin^2x=\dfrac{5}{2}-2sinx\)

\(\Leftrightarrow\dfrac{1}{2}sin^2x-2sinx+\dfrac{3}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=3\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)

26 tháng 2 2018

Chọn D

Ta sẽ biến đổi phương trình thành dạng tích

Chú ý: có thể dùng 4 đáp án thay vào phương trình để kiểm tra đâu là nghiệm