cho biểu thức
P=(\(\frac{a}{\sqrt{a^2-b^2}}\)trừ \(1+\frac{a}{\sqrt{a^2-b^2}}\)) chia (\(\frac{b}{a-\sqrt{a^2-b^2}}\))
a.rút gọn
b.xác định g.trị Q khi a=3b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
:") Làm bừa nhezzz
a) \(Q=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2}-b^2}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\frac{a-\sqrt{a^2-b^2}}{b}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-\left(\sqrt{a^2-b^2}\right)^2}{b.\left(\sqrt{a^2-b^2}\right)}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\left(\frac{a^2-\left(a^2-b^2\right)}{b.\left(\sqrt{a^2-b^2}\right)}\right)\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{b^2}{b\sqrt{a^2-b^2}}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}\)
\(=\frac{a-b}{\sqrt{a^2-b^2}}=\frac{a-b}{\sqrt{\left(a-b\right)\left(a+b\right)}}=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)
b) Thay a = 3b vào , ta được :
\(Q=\frac{\sqrt{3b-b}}{\sqrt{3b+b}}=\frac{\sqrt{2b}}{\sqrt{4b}}=\sqrt{\frac{2b}{4b}}=\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}\)
\(a,Q=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\left(\frac{b}{a-\sqrt{a^2-b^2}}\right)\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\left(\frac{\sqrt{a^2-b^2}+a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2+b^2}}\)
\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\frac{a-\sqrt{a^2-b^2}}{b}\)\(=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-\left(a^2-b^2\right)}{b\sqrt{a^2-b^2}}\)
\(=\frac{ab-a^2+a^2-b^2}{b\sqrt{a^2-b^2}}\)
\(=\frac{b\left(a-b\right)}{b\sqrt{a^2-b^2}}=\frac{\left(a-b\right)}{\sqrt{\left(a-b\right)\left(a+b\right)}}=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)
\(b.\frac{\sqrt{3b-b}}{\sqrt{3b+b}}=\frac{\sqrt{2b}}{\sqrt{4b}}=\frac{\sqrt{2}.\sqrt{b}}{2\sqrt{b}}=\frac{\sqrt{2}}{2}\)
a. Đề là \(Q=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\) ?
\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\frac{a-\sqrt{a^2-b^2}}{b}\)
\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{\left(a+\sqrt{a^2-b^2}\right)\left(a-\sqrt{a^2-b^2}\right)}{b\sqrt{a^2-b^2}}\)
\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-\left(a^2-b^2\right)}{b\sqrt{a^2-b^2}}\)
\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{b^2}{b\sqrt{a^2-b^2}}\)
\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}\)
\(\Leftrightarrow Q=\frac{a-b}{\sqrt{\left(a-b\right)\left(a+b\right)}}=\sqrt{\frac{a-b}{a+b}}\)
b. Thay a = 3b vào Q, ta được : \(Q=\sqrt{\frac{3b-b}{3b+b}}=\sqrt{\frac{2b}{4b}}=\sqrt{\frac{1}{2}}\)
Bài 1:
$14+\sqrt{40}+\sqrt{56}+\sqrt{140}=14+\sqrt{56}+(\sqrt{40}+\sqrt{140})$
=14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}=(12+2\sqrt{35})+2+(2\sqrt{10}+2\sqrt{14})$
$=(\sqrt{5}+\sqrt{7})^2+2+2\sqrt{2}(\sqrt{5}+\sqrt{7})$
$=(\sqrt{5}+\sqrt{7}+\sqrt{2})^2$
$\Rightarrow \sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}=\sqrt{2}+\sqrt{5}+\sqrt{7}$
\(\Rightarrow A=\frac{\sqrt{2}+\sqrt{5}+\sqrt{7}}{\sqrt{2}+\sqrt{5}+\sqrt{7}}=1\)
Lời giải:
a) ĐKXĐ: $a,b\geq 0$ và $a,b$ không đồng thời cùng bằng $0$
\(B=\frac{2a+2\sqrt{2}a-2\sqrt{3ab}+2\sqrt{3ab}-3b-2a\sqrt{2}}{a\sqrt{2}+\sqrt{3ab}}=\frac{2a-3b}{\sqrt{a}(\sqrt{2a}+\sqrt{3b})}=\frac{(\sqrt{2a}-\sqrt{3b})(\sqrt{2a}+\sqrt{3b})}{\sqrt{a}(\sqrt{2a}+\sqrt{3b})}\)
\(=\frac{\sqrt{2a}-\sqrt{3b}}{\sqrt{a}}=\sqrt{2}-\sqrt{\frac{3b}{a}}\)
b)
\(a=1+3\sqrt{2}; 3b=30+11\sqrt{8}\Rightarrow \frac{3b}{a}=\frac{30+11\sqrt{8}}{1+3\sqrt{2}}=\frac{(30+11\sqrt{8})(1-3\sqrt{2})}{(1+3\sqrt{2})(1-3\sqrt{2})}\)
\(=\frac{102+68\sqrt{2}}{17}=6+4\sqrt{2}=(2+\sqrt{2})^2\)
\(\Rightarrow \sqrt{\frac{3b}{a}}=2+\sqrt{2}\)
\(\Rightarrow B=\sqrt{2}-(2+\sqrt{2})=-2\)
Bạn coi lại đề
Cái ngoặc đầu tiên ấy, nhìn rất có vấn đề ở cái \(\sqrt{a}\) và \(\sqrt{2a}\)