K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3

Ta có: P = \frac{4\sqrt{x}}{8x} \cdot \frac{\sqrt{x} + 2}{\sqrt{x} - 2} : \frac{\sqrt{x} + 2}{x - 4} \cdot \frac{\sqrt{x} - 2}{\sqrt{x} + 2} = \frac{4\sqrt{x}(\sqrt{x} + 2)}{(8x)(\sqrt{x} - 2)} : \frac{x - 4}{x - 4} = \frac{4(\sqrt{x} + 2)}{8(\sqrt{x} - 2)} = \frac{1}{\sqrt{x} - 2} 2) Tìm các giá trị của x để P = -4: Ta có: P = -4 \Rightarrow \frac{1}{\sqrt{x} - 2} = -4 \Rightarrow \sqrt{x} - 2 = -\frac{1}{4} \Rightarrow \sqrt{x} = \frac{7}{4} \Rightarrow x = \left(\frac{7}{4}\right)^2 = \frac{49}{16} Vậy x = 49/16 là giá trị cần tìm.

14 tháng 5 2021

Em gửi ảnh ạ !

14 tháng 5 2021

Em gửi ảnh trên ạ !!!!!

a, ĐKXĐ: \(x>0;x\ne1;x\ne4\)

\(M=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(=\frac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{x-1-x+2}\)

\(=\frac{\sqrt{x}-2}{\sqrt{x}}\)

14 tháng 5 2021

1) Khi x = 49 thì:

\(A=\frac{4\sqrt{49}}{\sqrt{49}-1}=\frac{4\cdot7}{7-1}=\frac{28}{6}=\frac{14}{3}\)

2) Ta có:

\(B=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-1}\)

\(B=\frac{\sqrt{x}-1+x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

c) \(P=A\div B=\frac{4\sqrt{x}}{\sqrt{x}-1}\div\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{4\sqrt{x}}{\sqrt{x}+1}\)

Ta có: \(P\left(\sqrt{x}+1\right)=x+4+\sqrt{x-4}\)

\(\Leftrightarrow\frac{4\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=x+4+\sqrt{x-4}\)

\(\Leftrightarrow4\sqrt{x}=x+4+\sqrt{x-4}\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\sqrt{x-4}=0\)

Mà \(VT\ge0\left(\forall x\ge0,x\ne1\right)\)

\(\Rightarrow\hept{\begin{cases}\left(\sqrt{x}-2\right)^2=0\\\sqrt{x-4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}=2\\x-4=0\end{cases}}\Rightarrow x=4\)

Vậy x = 4

NV
1 tháng 7 2019

ĐKXĐ: \(\left\{{}\begin{matrix}-1\le x\le1\\x\ne0\end{matrix}\right.\)

\(A=\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}+\frac{\sqrt{1-x}^2}{\sqrt{1-x}\left(\sqrt{1+x}-\sqrt{1-x}\right)}-\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\)

\(=\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}-\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\)

\(=\frac{1+x+1-x+2\sqrt{1-x^2}-\left(1+x+1-x-2\sqrt{1-x^2}\right)}{2x}\)

\(=\frac{2\sqrt{1-x^2}}{x}\)

\(\sqrt{1-x^2}=\sqrt{1-\frac{4+2\sqrt{3}}{8}}=\sqrt{\frac{4-2\sqrt{3}}{8}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)

\(\Rightarrow A=\frac{\sqrt{3}-1}{\sqrt{2}}.\frac{2\sqrt{2}}{\sqrt{3}+1}=\frac{2\left(\sqrt{3}-1\right)^2}{2}=4-2\sqrt{3}\)

21 tháng 6 2017

a) ĐK: x > 1

 \(P=\left(\frac{\sqrt{x-1}}{3+\sqrt{x-1}}+\frac{x+8}{9-\left(x-1\right)}\right):\left(\frac{3\sqrt{x-1}+1}{\left(x-1\right)-3\sqrt{x-1}}-\frac{1}{\sqrt{x-1}}\right)\)

\(P=\frac{\sqrt{x-1}\left(3-\sqrt{x-1}\right)+x+8}{9-\left(x-1\right)}:\frac{3\sqrt{x-1}+1-\left(\sqrt{x-1}-3\right)}{\sqrt{x-1}\left(\sqrt{x-1}-3\right)}\)

\(P=\frac{3\sqrt{x-1}-x+1+x+8}{10-x}:\frac{2\sqrt{x-1}+4}{\sqrt{x-1}\left(\sqrt{x-1}-3\right)}\)

\(P=\frac{3\left(\sqrt{x-1}+3\right)}{10-x}.\frac{\sqrt{x-1}\left(\sqrt{x-1}-3\right)}{2\sqrt{x-1}+4}\)

\(P=\frac{-3\sqrt{x-1}}{2\sqrt{x-1}+4}\)

b) \(x=\sqrt[4]{\frac{17+12\sqrt{2}}{1}}-\sqrt[4]{\frac{17-12\sqrt{2}}{1}}=1+\sqrt{2}-\left(\sqrt{2}-1\right)=2\)

Vậy \(P=\frac{-3\sqrt{2-1}}{2\sqrt{2-1}+4}=-\frac{1}{2}\)

21 tháng 6 2017

cô Hoàng Thị Thu Huyền làm rõ cho em ý b đc ko ạ chỗ biến đổi x