K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 7 2023

Lời giải:
$2=\sqrt{4}< \sqrt{5}$

$\Rightarrow -2> -\sqrt{5}$

b. Để biểu thức trên có nghĩa thì \(\left\{\begin{matrix} 5-x\neq 0\\ \frac{10}{5-x}\geq 0\end{matrix}\right.\Leftrightarrow 5-x>0\Leftrightarrow x<5\)

a: -2=-căn 4>-căn 5

b: ĐKXĐ: 10/5-x>=0

=>5-x>0

=>x<5

a: ĐKXĐ: \(x\ne\dfrac{3}{2}\)

b: ĐKXĐ: \(x\in R\)

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

a: \(B=\dfrac{2x+3\sqrt{x}+9-x+3\sqrt{x}}{x-9}=\dfrac{x+9}{x-9}\)

b: \P=A:B

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\cdot\dfrac{x-9}{x+9}=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{x+9}>=\dfrac{-1\cdot3}{9}=\dfrac{-1}{3}\)

Dấu = xảy ra khi x=0

27 tháng 9 2023

Có \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=1-\dfrac{10}{\sqrt{x}+5}\)

Dễ thấy \(\dfrac{10}{\sqrt{x}+5}>0\forall x\Rightarrow A=1-\dfrac{10}{\sqrt{x}+5}< 1\)

=> A < 2

28 tháng 6 2023

\(\dfrac{1}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\) có nghĩa \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}-3\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\\sqrt{x}\ne3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

28 tháng 6 2023

dạ cho e hỏi sao k xét cái căn x cộng 2 ạ. e cảm ơn

 

11 tháng 10 2023

1) \(A=3\sqrt{\dfrac{1}{3}}-\dfrac{5}{2}\sqrt{12}-\sqrt{48}\)

\(=3\cdot\dfrac{\sqrt{1}}{\sqrt{3}}-\dfrac{5\sqrt{12}}{2}-\sqrt{4^2\cdot3}\)

\(=\dfrac{3\cdot1}{\sqrt{3}}-\dfrac{5\cdot2\sqrt{3}}{2}-4\sqrt{3}\)

\(=\sqrt{3}-5\sqrt{3}-4\sqrt{3}\)

\(=-8\sqrt{3}\)

2) \(A=\sqrt{12-4x}\) có nghĩa khi:

\(12-4x\ge0\)

\(\Leftrightarrow4x\le12\)

\(\Leftrightarrow x\le\dfrac{12}{4}\)

\(\Leftrightarrow x\le3\)

3) \(\dfrac{2x-2\sqrt{x}}{x-1}\)

\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}\right)^2-1^2}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2\sqrt{\text{x}}}{\sqrt{x}+1}\)

23 tháng 12 2021

\(a,ĐK:x>0;x\ne1\\ b,B=\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\\ c,B=\dfrac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\dfrac{2}{\sqrt{x}-1}\in Z\\ \Leftrightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{2;3\right\}\left(x>0\right)\Leftrightarrow x\in\left\{4;9\right\}\left(tm\right)\)

23 tháng 12 2021

mk cảm ơn nhìuuuu nha

Để biểu thức đề bài cho có giá trị nguyên thì \(5\sqrt{x}-6⋮2\sqrt{x}-3\)

\(\Leftrightarrow10\sqrt{x}-12⋮2\sqrt{x}-3\)

\(\Leftrightarrow2\sqrt{x}-3\in\left\{-3;-1;1;3\right\}\)

\(\Leftrightarrow2\sqrt{x}\in\left\{0;2;4;6\right\}\)

hay \(x\in\left\{0;1;4;9\right\}\)