Tìm x biết:
a. (x+2)4=(x+2)6
b. 2x+2x+1=24
cảm ơn các bạn trước làm dùm nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow5x+3x^2-3x^2-x+2=6\\ \Rightarrow4x=4\Rightarrow x=1\\ b,\Rightarrow\left(2x+\dfrac{1}{2}-1+2x\right)\left(2x+\dfrac{1}{2}+1-2x\right)=2\\ \Rightarrow\dfrac{3}{2}\left(4x-\dfrac{1}{2}\right)=2\\ \Rightarrow6x-\dfrac{3}{4}=2\\ \Rightarrow6x=\dfrac{11}{4}\\ \Rightarrow x=\dfrac{11}{24}\\ c,\Rightarrow\left(x+3\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Bài 1:
\(a,=6x^2+6x\\ b,=15x^3-10x^2+5x\\ c,=6x^3+12x^2\\ d,=15x^4+20x^3-5x^2\\ e,=2x^2+3x-2x-3=2x^2+x-3\\ f,=3x^2-5x+6x-10=3x^2+x-10\)
Bài 2:
\(a,\Leftrightarrow3x^2+3x-3x^2=6\\ \Leftrightarrow3x=6\Leftrightarrow x=2\\ b,\Leftrightarrow6x^2+3x-6x^2+9x-2x-3=10\\ \Leftrightarrow10x=13\Leftrightarrow x=\dfrac{13}{10}\)
a) Ta có: \(8x\left(2x-3\right)-4x\left(4x+3\right)=72\)
\(\Leftrightarrow16x^2-24x-16x^2-12x=72\)
\(\Leftrightarrow-36x=72\)
hay x=-2
b) Ta có: \(\left(x+2\right)\left(x+4\right)-x\left(x+2\right)=104\)
\(\Leftrightarrow x^2+6x+8-x^2-2x=104\)
\(\Leftrightarrow4x=96\)
hay x=24
c) Ta có: \(\left(x-1\right)\left(x+4\right)-x\left(x-1\right)=308\)
\(\Leftrightarrow x^2+3x-4-x^2+x=308\)
\(\Leftrightarrow4x=312\)
hay x=78
d) Ta có: \(15x\left(2x-3\right)-\left(5x+2\right)\left(6x-5\right)=-22\)
\(\Leftrightarrow30x^2-45x-30x^2+25x-12x+10=-22\)
\(\Leftrightarrow-32x=-32\)
hay x=1
1) \(2x\cdot\left(x-3\right)-5=3x\left(2x-5\right)-4x^2+40\)
\(\Leftrightarrow2x^2-6x-5=6x^2-15x-4x^2+40\)
\(\Leftrightarrow2x^2-6x-5=2x^2-15x+40\)
\(\Leftrightarrow2x^2-6x-5-2x^2+15x-40=0\)
\(\Leftrightarrow9x-45=0\)
<=> x=5
2) x(2x-1)-5(-7)2=2x2-2x+5
<=> 2x2-x-5.49=2x2-2x+5
<=> 2x2-x-245-2x2+2x-5=0
<=> x-250=0
<=> x=250
3) |a-2|=10
\(\Leftrightarrow\orbr{\begin{cases}x-2=10\\x-2=-10\end{cases}\Leftrightarrow\orbr{\begin{cases}x=12\\x=-8\end{cases}}}\)
4) |x|=-5
=> Không tồn tại giá trị của x thỏa mãn vì |x| >=0 với mọi x thuộc Z
\(x\left(5-6x\right)+\left(2x-1\right)\left(3x+\text{4}\right)=6\\ \Leftrightarrow5x-6x^2+6x^2+8x-3x-4=6\)
\(\Leftrightarrow10x-4=6\)
\(\Leftrightarrow10x=6+4\\ \Leftrightarrow10x=10\\ \Leftrightarrow x=\dfrac{10}{10}\)
\(\Leftrightarrow x=1\)
\(x^2\left(x-2021\right)-x+2021=0\)
\(\Leftrightarrow x^2\left(x-2021\right)-(x-2021)=0\)
\(\Leftrightarrow\left(x-2021\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-2021\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2021=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2021\\x=1\\x=-1\end{matrix}\right.\)
c: Ta có: \(x^3-12x^2+48x-64=0\)
\(\Leftrightarrow x-4=0\)
hay x=4
Ta có : (x + 2)4 = (x + 2)6
=> x + 2 = 1;0
=> x = -1;-2
a,Ta có: \(\left(x+2\right)^4=\left(x+2\right)^6\)
\(\left(x+2\right)^4-\left(x+2\right)^6=0\)
\(\left(x+2\right)^4\text{[}1-\left(x+2\right)^2\text{]=0}\)
\(\Rightarrow\orbr{\begin{cases}\left(x+2\right)^4=0\\1-\left(x+2\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+2=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-1\end{cases}}\)