Cho hai phân thức \(\frac{x+1}{x}\) và \(\frac{x+1}{x-1}\) với \(x\)≠\(0\) và \(x\)≠\(1\) Cặp phân thức trên có bằng nhau không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{x^2-4}{x+1}\)
\(=\dfrac{\left(x+2\right)\left(x-2\right)}{x+1}\)
Và:
\(\dfrac{x+2}{2x}\)
\(=\dfrac{\left(x+2\right)\left(x-2\right)}{2x\left(x-2\right)}\)
Vậy ta đã biến đổi hai phân thức đó để chúng bằng phân thức cũ và có tủ bằng nhau
EM MỚI LỚP 3 LÊN EM KO BIẾT GÌ HẾT
CHẮC CHỊ HOẶC ANH NÊN TRA GOOGLE
\(\dfrac{x^3-x^2-x+1}{x^4-2x^2+1}=\dfrac{x^2\left(x-1\right)-\left(x-1\right)}{\left(x-1\right)^2\cdot\left(x+1\right)^2}=\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)}{\left(x-1\right)^2\cdot\left(x+1\right)^2}=\dfrac{1}{x+1}\)
\(\dfrac{5x^3+10x^2+5x}{x^3+3x^2+3x+1}=\dfrac{5x\left(x+1\right)^2}{\left(x+1\right)^3}=\dfrac{5x}{x+1}\)
\(\dfrac{x^2-1}{\left(x+1\right)\left(x-3\right)}\)
\(=\dfrac{x^2-1^2}{\left(x+1\right)\left(x-3\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-3\right)}\)
\(=\dfrac{x-1}{x-3}\)
Vậy đã biến đổi phân thức đó thành một phân thức bằng nó và có tử bằng với đa thức \(A=x-1\)
`->` Cặp phân thức trên không bằng nhau , vì khác mẫu với nhau \(\left(x\ne x-1\right)\)
Ta có:
\(\dfrac{x+1}{x}\)≠ \(\dfrac{x+1}{x-1}\)
Vậy hai phân thức trên không bằng nhau