Thu gọn đa thức sau rồi sắp xếp theo luỹ thừa giảm dần của biến P(x) =2x³+5x⁴+x²-x³-3x⁴+2022+3x²-x³
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`a)`
`P(x) =`\(3x^2+7+2x^4-3x^2-4-5x+2x^3\)
`= (3x^2 - 3x^2) + 2x^4 + 2x^3 - 5x + (7-4)`
`= 2x^4 + 2x^3 - 5x + 3`
`Q(x) =`\(3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)
`= (5x^4 - x^4) + (3x^3 + x^3) + 2x^2 + (x + 4x)- 2`
`= 4x^4 + 4x^3 + 2x^2 + 5x - 2`
`b)`
`P(-1) = 2*(-1)^4 + 2*(-1)^3 - 5*(-1) + 3`
`= 2*1 + 2*(-1) + 5 + 3`
`= 2 - 2 + 5 + 3`
`= 8`
___
`Q(0) = 4*0^4 + 4*0^3 + 2*0^2 + 5*0 - 2`
`= 4*0 + 4*0 + 2*0 + 5*0 - 2`
`= -2`
`c)`
`G(x) = P(x) + Q(x)`
`=> G(x) = 2x^4 + 2x^3 - 5x + 3 + 4x^4 + 4x^3 + 2x^2 + 5x - 2`
`= (2x^4 + 4x^4) + (2x^3 + 4x^3) + 2x^2 + (-5x + 5x) + (3 - 2)`
`= 6x^4 + 6x^3 + 2x^2 + 1`
`d)`
`G(x) = 6x^4 + 6x^3 + 2x^2 + 1`
Vì `x^4 \ge 0 AA x`
`x^2 \ge 0 AA x`
`=> 6x^4 + 2x^2 \ge 0 AA x`
`=> 6x^4 + 6x^3 + 2x^2 + 1 \ge 0`
`=> G(x)` luôn dương `AA` `x`
Bài làm:
Ta có:
\(f\left(x\right)=x^3-3x^2+2x-5+x^2\)
\(f\left(x\right)=x^3-2x^2+2x-5\)
Và:
\(g\left(x\right)=-x^3-5x+3x^2+3x+4\)
\(g\left(x\right)=-x^3+3x^2-2x+4\)
Chúc bạn học tốt!
A(x)=x^4+3x^4-3x^3+5x^3+2x^2-6x+x-1
=4x^4+2x^3+2x^2-5x-1
a) Sắp xếp đa thức - 3 x 3 + 5 x 2 – 9x + 15 và -3x + 5.
Thực hiện phép chia thu được đa thức thương x 2 + 3.
b) Sắp xếp đa thức x 3 – 4 x 2 + 5x – 20.
Thực hiện phép chia thu được đa thức thương x 2 + 5.
`a)`
\(P\left(x\right)=4x+3x^2+x^2+1-5x-2x\\ =\left(3x^2+x^2\right)+\left(4x-5x-2x\right)+1\\ =4x^2-3x+1\\ Q\left(x\right)=3x+x+7-5x^2+5x-11\\ =-5x^2+\left(3x+x+5x\right)+\left(7-11\right)\\ =-5x^2+9x-4\)
`b)`
Đa thức `P(x)` có :
Bậc `2`
Đa thức `Q(x)` có :
Bậc `2`
`c)`
\(P\left(x\right)+Q\left(x\right)=\left(4x^2-3x+1\right)+\left(-5x^2+9x-4\right)\\ =4x^2-3x+1-6x^2+9x-4\\ =\left(4x^2-5x^2\right)-\left(3x-9x\right)+\left(1-4\right)\\ =-x^2+6x-3\)
a: P(x)=4x^2+4x+1-7x=4x^2-3x+1
Q(x)=-5x^2+9x-4
b: P(x) có bậc 2
Q(x) có bậc 2
c: P(x)+Q(x)=4x^2-3x+1-5x^2+9x-4=-x^2+6x-3
a) Ta có: \(P\left(x\right)=2+5x^2-3x^3+4x^2-2x-x^3+6x^5\)
\(=6x^5-\left(3x^3+x^3\right)+\left(5x^2+4x^2\right)-2x+2\)
\(=6x^5-4x^3+9x^2-2x+2\)
a) \(P\left(x\right)=3x^3-2x+2x^2+7x+8-x^4)\)
\(P\left(x\right)=3x^3(-2x+7x)+2x^2+8-x^4)\)
\(P\left(x\right)=3x^3+5x+2x^2+8-x^4)\)
\(P\left(x\right)=-x^4+3x^3+2x^2+5x+8\)
\(Q\left(x\right)=2x^2-3x^3+3x^2-5x^4\)
\(Q\left(x\right)=(2x^2+3x^2)-3x^3-5x^4\)
\(Q\left(x\right)=5x^2-3x^3-5x^4\)
\(Q\left(x\right)=-5x^4-3x^2+5x^2\)
b)
\(P\left(x\right)+Q\left(x\right)=(3x^3-2x+2x^2+7x+8-x^4)+\left(2x^2-3x^3+3x^2-5x^4\right)\)
\(P\left(x\right)+Q\left(x\right)=3x^3-2x+2x^2+7x+8-x^4+2x^2-3x^3+3x^2-5x^4\)
\(P\left(x\right)+Q\left(x\right)=\left(3x^3-3x^3\right)+\left(-2x+7x\right)+\left(2x^2+2x^2+3x^2\right)+8+\left(-x^4-5x^4\right)\)\(P\left(x\right)+Q\left(x\right)=5x+7x^2+8-6x^4\)
Vậy: \(R\left(x\right)\) \(=5x+7x^2+8-6x^4\)
c. \(R\left(x\right)\) \(=5x+7x^2+8-6x^4\)
\(=5x+7x^2+4+4-6x^4\)
\(=\) \((12x-4)^2+4\ge4-6x^4\)
Câu c MIK KHÔNG CHẮC LÀ ĐÚNG
Ta có:
\(P\left(x\right)=2x^3+5x^4+x^2-x^3-3x^4+2022+3x^2-x^3\)
\(P\left(x\right)=\left(5x^4-3x^4\right)+\left(2x^3-x^3-x^3\right)+\left(x^2+3x^2\right)+2022\)
\(P=2x^4+4x^2+2022\)