K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2015

a) ta có: (n+6)(n+7) là tích của 2 số tự nhiên liên tiếp => trong đó nhất định có một số chia hết cho 2 => tích sẽ luôn luôn chia hết cho 2

b) với n=2k ( n chẵn)  => n^2+n+3= 4k^2+2k+3

4k^2 chia hết cho 2k chia hết cho 2 nhưng +3 => k chia hết cho 2

với n=2k+1 ( n lẻ) =>  n^2+n+3=\(\left(2k+1\right)^2+2k+1+3=4k^2+6k+5\) giải thích như trên

=> k chia hết cho 2 với mọi n

 

16 tháng 1 2016

a) Vì ( n+6 ) (n+7) là tích 2 số tự nhiên liên tiếp

=> (n+6)(n+7) chia hết cho 2

b) n^2 + n + 3 = n(n+1) +3

 Vì  n(n+1) là tích 2 số tự nhiên liên tiếp => n(n+1) chia hết cho 2

mà 3 ko chia hết cho 2

=> n(n+1) +3 ko chia hết cho 2

=>n^2 + n  ko chia hết cho 2

3 tháng 6 2016

Câu a :

Chứng minh rằng : (n-1 ) (n+2) + 12 không chia hết cho 9  

Giã thiết biểu thức : (n-1 ) (n+2) + 12 chia hết cho 9 .

Đặt A = (n-1 ) (n+2) + 12 , nên A = 9 hoặc bội số của 9 .

Ta có :  A = (n-1 ) (n+2) + 12

 A = n x n + n x 2 - n - 2 + 12  

A = n x n + n + 10  A = n x (n + 1) + 10  

A - 10 = n x (n + 1)  

Vì theo giã thiết A là 9 hoặc bội số của 9 nên A chia hết cho 9 .

Vậy Nếu A bớt đi 9 thì A -9 sẽ chia hết cho 9 , nhưng kết quả biểu thức trên là :

A - 10 = n x (n + 1) mà A - 10 không chia hết cho 9 .  

Vậy A - 10 = n x (n + 1) không chia hết cho 9 .

Hay (n-1 ) (n+2) + 12 không chia hết cho 9

Câu b :

Chứng minh rằng : ( n + 2 ) ( n +9 )+21 không chia hết cho 49  

Muốn biểu thức ( n + 2 ) ( n +9 ) + 21 chia hết cho 49 thì biểu thức này = 49 hay bội số của 49.  

Đặt : A = ( n + 2 ) ( n +9 ) + 21 ( A là bội số của 49) ta có :  

A = ( n + 2 ) ( n +9 ) + 21  

A = n x n + 9 x n + 2 x n + 18 + 21  

A = n x n + 11 x n + 39  

A - 39 = n x ( n + 11)  

Vì giã thiết A là bội của 49 nên A - 39 không thể chia hết cho 49 nên  

A = ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49  

Vậy : ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49

Nguồn :Toán Tiểu Học Pl

3 tháng 6 2016

b)

Chứng minh rằng : ( n + 2 ) ( n +9 )+21 không chia hết cho 49

Muốn biểu thức ( n + 2 ) ( n +9 ) + 21 chia hết cho 49 thì biểu thức này = 49 hay bội số của 49.

Đặt : A = ( n + 2 ) ( n +9 ) + 21 ( A là bội số của 49) ta có :

A = ( n + 2 ) ( n +9 ) + 21

A = n x n + 9 x n + 2 x n + 18 + 21

A = n x n + 11 x n + 39

A - 39 = n x ( n + 11)

Vì giã thiết A là bội của 49 nên A - 39 không thể chia hết cho 49 nên

A = ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49

Vậy : ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49

21 tháng 10 2015

2,

+ n chẵn

=> n(n+5) chẵn 

=> n(n+5) chia hết cho 2

+ n lẻ

Mà 5 lẻ

=> n+5 chẵn => chia hết cho 2

=> n(n+5) chia hết cho 2

KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N

21 tháng 10 2015

3, 

A = n2+n+1 = n(n+1)+1

a, 

+ Nếu n chẵn

=> n(n+1) chẵn 

=> n(n+1) lẻ => ko chia hết cho 2

+ Nếu n lẻ

Mà 1 lẻ

=> n+1 chẵn

=> n(n+1) chẵn

=> n(n+1)+1 lẻ => ko chia hết cho 2

KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)

b, + Nếu n chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

+ Nếu n chia 5 dư 1

=> n+1 chia 5 dư 2

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 2

=> n+1 chia 5 dư 3

=> n(n+1) chia 5 dư 1

=> n(n+1)+1 chia 5 dư 2

+ Nếu n chia 5 dư 3

=> n+1 chia 5 dư 4

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 4

=> n+1 chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)

20 tháng 10 2017

1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)

     +Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)

2)Tg tự câu a

19 tháng 12 2021

1 + 1 = 

em can gap!!!

Nhanh e k cho

19 tháng 2 2017

1, Ta có:\(\left(2n+7\right)⋮31\Rightarrow\left(2n+7\right)\inƯ\left(31\right)\)

\(\Leftrightarrow2n+7\in1;31\)

\(\Rightarrow n\in-3;12\)

Mà n là số tự nhiên nên n=12

Vậy n=12.

2,Ta có:n2+5n+5=n(n+5)+5

n(n+5) là tích của 2 số tự nhiên cách nhau 5 đơn vị nên tận cùng là 0,4,6.

Suy ra n(n+5)+5 tận cùng là 1;5;9.

Mà số chia hết cho 25 tận cùng là 25,50,75,00.

Nhưng trong các trường hợp trên thì trường hợp tận cùng là 5 cũng rất ít và nó càng không thể chia hết cho 25.

Vậy n2+5n+5 không chia hết cho 25.

22 tháng 8 2019

a)(5n+7)(4n+6)=20n^2+58n+42

Ta thấy 20;58;42 chia hết cho 2 nên (5n+7)(4n+6) chia hết cho 2

b)(8n+1)(6n+5)=40n^2+46n+5

Ta thấy 20;46 chia hết cho 2 và 5 ko chia hết cho 2 nên (8n+1)(6n+5)  ko chia hết cho 2

15 tháng 8 2016

Bài 1

Số các số chia hết chia hết cho 2 là

(100-2):2+1=50 ( số )

Số các số chia hết cho 5 là

(100-5):5+1=20 ( số)

Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2

Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2

Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2

Bài 4 bạn ghi thiếu đề

16 tháng 8 2016

1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số  chia hết cho 5 ?

2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?

3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?

4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )

Bài 1

Số các số chia hết chia hết cho 2 là

(100-2):2+1=50 ( số )

Số các số chia hết cho 5 là

(100-5):5+1=20 ( số)

12 tháng 6 2017

a) Với mọi n là số lẻ hoặc số chẵn thì \(A=\left(n+6\right)\left(n+7\right)\) luôn luôn là số chẵn . Do đó \(A⋮2\)với mọi \(n\in Z\)

b) \(B=n\left(n+1\right)+3\)

Vì \(n\left(n+1\right)\)là tích của hai số nguyên liên tiếp nên là số chẵn , do đó \(n\left(n+1\right)⋮2\), nhưng 3 không chia hết cho 2 

\(\Rightarrow\)B không chia hết cho 2 với mọi \(n\in Z\)

12 tháng 6 2017

Nếu n là số chẵn thì (n + 6) chia hết cho 2 

=> (n + 6)(n + 7) chia hết cho 2 

Nếu n là số lẻ thì (n + 7) chia hết cho 2 

=> (n + 6)(n + 7) chia hết cho 2 

Vậy với mọi n nguye thì (n + 6)(n + 7) đều chia hết cho 2