Cho B=1+4+42+...+42016
Rút gọn B
Giúp mình nha mình đang cần
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\left(-a-b+c\right)-\left(-a-b-c\right)\)
\(A=-a-b+c-\left(-a\right)+b+c\)
\(A=-a+\left(-b\right)+c+a+b+c\)
\(A=\left[\left(-a\right)+a\right]+\left[\left(-b\right)+b\right]+\left(c+c\right)\)
\(A=0+0+2c\)
\(A=2c\)
____________________________________________________________________________
b)
Cách 1 : \(A=\left(-1-\left(-1\right)+\left(-2\right)\right)-\left(1-\left(-1\right)-\left(-2\right)\right)\)
\(A=-1-\left(-1\right)+\left(-2\right)-\left(-1\right)+\left(-1\right)+\left(-2\right)\)
\(A=-1+1+\left(-2\right)+1+\left(-1\right)+\left(-2\right)\)
\(A=\left[\left(-1\right)+1+1+\left(-1\right)\right]+\left[\left(-2\right)+\left(-2\right)\right]\)
\(A=0+\left(-4\right)=\left(-4\right)\)
Cách 2 : Từ ý a suy ra :
\(A=\left(-2\right)\cdot2=\left(-4\right)\)
Câu hỏi của Phạm Hải Yến - Toán lớp 7 - Học toán với OnlineMath
Em chỉ cần đổi số 2015 -----> 2012
In your hands á
Năm ngoái mik hát bài này, dễ thuộc lắm
\(\left(15.3^{42}-9^{20}\right):27^3\)
\(=\left(5.3.3^{42}-3^{40}\right):3^9\)
\(=\left(5.3^{43}-3^{40}\right):3^9\)
\(=3^{40}\left(5.3^3-1\right):3^9\)
\(=3^{31}\left(5.3^3-1\right)\)
\(=134.3^{31}\)
\(\left(15.3^{42}-9^{20}\right):27^3=15.3^{42}:27^3-9^{20}:27^3\\ \\ =15.3^{42}:\left(3^3\right)^3-9^{20}:9^3:3^3=15.3^{33}-\left(3^2\right)^{20}:\left(3^2\right)^3:3^3\)
\(=15.3^{33}-3^{40}:3^6:3^3=15.3^{33}-3^{31}\\ \\ =15.3^2.3^{31}-3^{31}=135.3^{31}-3^{31}\\ \\ =3^{31}.\left(135-1\right)=3^{31}.134\)
\(A=\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\)
\(=\left\{2x-3x+3-5\left[x-12+8x+10\right]\right\}.\left(-2x\right)\)
\(=\left\{-x+3-5\left(7x-2\right)\right\}.\left(-2x\right)\)
\(=\left(-x+3-35x+10\right).\left(-2x\right)\)
\(=\left(-36x+13\right).\left(-2x\right)\)
\(=72x^2-26x\)
1) \(A=\left(x+y\right)^2+4xy=x^2+2xy+y^2+4xy=x^2+6xy+y^2\)
2) \(B=\left(6x-2\right)^2+4\left(3x-1\right)\left(2+y\right)+\left(y+2\right)^2\)
\(=\left(6x-2\right)^2+2\left(6x-2\right)\left(y+2\right)+\left(y+2\right)^2\)
\(=\left(6x-2+y+2\right)^2=\left(6x+y\right)^2=36x^2+12xy+y^2\)
3) \(C=\left(x-y\right)^2+2\left(x^2-y^2\right)+\left(x+y\right)^2\)
\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x-y+x+y\right)^2=\left(2x\right)^2=4x^2\)
\(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}=a+\sqrt{ab}+b\)
Ta có:
\(4B=4+4^2+4^3+...+4^{2017}\)
\(\Rightarrow4B-B=\left(4+4^2+4^3+....+4^{2017}\right)-\left(1+4+4^2+.....+4^{2016}\right)\)
\(\Rightarrow3B=4^{2017}-1\)
\(\Rightarrow B=\frac{4^{2017}-1}{3}\)
Vậy \(B=\frac{4^{2017}-1}{3}\)
\(B=1+4+4^2+...+4^{2016}\)
\(4B=4\left(1+4+4^2+...+4^{2016}\right)\)
\(4B=4+4^2+4^3+...+4^{2017}\)
\(4B-B=4^{2017}-1\)
\(3B=4^{2017}-1\)
\(B=\frac{4^{2017}-1}{3}\)