Chứng minh rằng vs mọi số nguyên dương n thì :
\(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{3n+1}>1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{n^2+n+2n+2}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n+1\right).\left(n+2\right)}\)
\(\Leftrightarrow\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{\left(n+2\right)-\left(n+1\right)}{\left(n+2\right).\left(n+1\right)}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x+1}-\frac{1}{x+2}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+2}< \frac{1}{2}\left(đpcm\right)\)
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(=\frac{1}{4}-\frac{1}{2\left(n+1\right)\left(n+2\right)}\) \(< \frac{1}{4}\)
bạn Phạm Hữu Tiến, bạn mất dạy vừa thôi nha mình chưa làm j bạn, mình chỉ hỏi bài các bạn thôi, bạn không trả lời đc thì thôi chứ sao bạn lại nói tục như vậy?????????
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(< \left(1+\frac{\sqrt{n+1}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Áp dụng vào bài toán ta được
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)
\(\RightarrowĐPCM\)
Với n = 1 thì ta có:
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}>1\)
Giả sử bất đẳng thức trên đúng tới n = k hay
\(\frac{1}{k+1}+\frac{1}{k+2}+...+\frac{1}{3k+1}>1\)
Ta cần chứng minh bất đẳng thức cũng đúng với n = k + 1.
Ta có: \(\frac{1}{k+2}+\frac{1}{k+3}+...+\frac{1}{3k+4}\)
\(=\left(\frac{1}{k+1}+\frac{1}{k+2}+...+\frac{1}{3k+1}\right)+\left(\frac{1}{3k+2}+\frac{1}{3k+3}+\frac{1}{3k+4}-\frac{1}{k+1}\right)\)
Ta đã có: \(\frac{1}{k+1}+\frac{1}{k+2}+...+\frac{1}{3k+1}>1\) nên ta cần chứng minh
\(\frac{1}{3k+2}+\frac{1}{3k+3}+\frac{1}{3k+4}-\frac{1}{k+1}>0\)
\(\Leftrightarrow\frac{2}{\left(3k+2\right)\left(3k+3\right)\left(3k+4\right)}>0\) đúng
Vậy theo quy nạp thì \(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{3n+1}>1\) đúng với mọi n nguyên dương.
Cho t hỏi sao lại có đoạn \(\frac{1}{k+2}+\frac{1}{k+3}+....+\frac{1}{3k+4}\)tòi ra và phải c/minh nó lớn hơn 0??