a,b,c>0,a+b+c=1. tìm Max √(3a^2+1/3b^2+1)+√(3b^2+1/3c^2+1)+√(3c^2+1/3a^2+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)
CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)
\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)
Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu = xảy ra khi a=b=c=3
Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)
\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)
Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)
\(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)
\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)
Vậy...
Ta có BĐT: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=3.3=9\)
\(\Rightarrow a+b+c\ge3\)
Phân tích và áp dụng BĐT AM-GM:
\(\dfrac{1+3a}{1+b^2}=\dfrac{1}{1+b^2}+\dfrac{3a}{1+b^2}=\left(1-\dfrac{b^2}{1+b^2}\right)+\left(3a-\dfrac{3ab^2}{1+b^2}\right)\ge\left(1-\dfrac{b^2}{2b}\right)+\left(3a-\dfrac{3ab^2}{2b}\right)=\left(1-\dfrac{b}{2}\right)+\left(3a-\dfrac{3}{2}ab\right)\)
Tương tự:
\(\dfrac{1+3b}{1+c^2}\ge\left(1-\dfrac{c}{2}\right)+\left(3b-\dfrac{3}{2}bc\right)\)
\(\dfrac{1+3c}{1+a^2}\ge\left(1-\dfrac{a}{2}\right)+\left(3c-\dfrac{3}{2}ca\right)\)
Cộng các vế của các BĐT ta được:
\(P\ge3-\dfrac{1}{2}\left(a+b+c\right)+3\left(a+b+c\right)-\dfrac{3}{2}\left(ab+bc+ca\right)=3+\dfrac{5}{2}\left(a+b+c\right)-\dfrac{3}{2}.3\ge3+\dfrac{5}{2}.3-\dfrac{9}{2}=6\)
\(P=6\Leftrightarrow a=b=c=1\)
Vậy \(P_{min}=6\)
Ngoài http://olm.vn/hoi-dap/question/779981.html còn cách khác
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(9a^3+3a^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow A\le\text{∑}\frac{a\left(\frac{1}{9a}+\frac{1}{3}+c\right)}{\left(a+b+c\right)^2}=\text{∑}\left(\frac{1}{9}+\frac{a}{3}+ac\right)\)
\(=\frac{1}{3}+\frac{a+b+c}{3}+\text{∑}ab\le\frac{1}{3}+\frac{1}{3}+\frac{\left(a+b+c\right)^2}{3}=1\)
Dấu "=" khi \(a=b=c=\frac{1}{3}\)
\(VT=\dfrac{a^3bc}{c+ab^2c}+\dfrac{ab^3c}{a+abc^2}+\dfrac{abc^3}{b+a^2bc}\)
\(=abc\left(\dfrac{a^2}{c+ab^2c}+\dfrac{b^2}{a+abc^2}+\dfrac{c^2}{b+a^2bc}\right)\)
Áp dụng bđt Cauchy-Schwarz dạng engel có:
\(VT\ge\dfrac{abc\left(a+b+c\right)^2}{a+b+c+abc\left(a+b+c\right)}\)\(=\dfrac{abc\left(a+b+c\right)}{1+abc}\)
Dấu "=" xảy ra khi \(a=b=c\)
Vậy...
Sai đề không bạn,tại a=b=c=2 thay vào không thỏa mãn nha
Áp dụng BĐT AM-GM ta có:
\(9a^3+\frac{1}{3}+\frac{1}{3}\ge3\sqrt[3]{9a^3\cdot\frac{1}{3}\cdot\frac{1}{3}}=3a\)
\(3b^2+\frac{1}{3}\ge2\sqrt{3b^2\cdot\frac{1}{3}}=2b\)
Do đó: \(A\le\text{∑}\frac{a}{3a+2b+c-1}=\frac{a}{2a+b}\left(a+b+c=1\right)\)
\(2A\le\text{∑}\frac{2a}{2a+b}=3-\text{∑}\frac{b}{2a+b}=3-\text{∑}\frac{b^2}{2ab+b^2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(2A\le3-\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=3-\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\Leftrightarrow A\le1\)
Dấu "=" khi \(a=b=c=\frac{1}{3}\)
Đặt ab = x, bc = y, ca = z (x, y, z ≠ 0 thỏa mãn x^3 + y^3 + z^3 = 3xyz)
⇔ (x+y)^3 − 3xy(x + y) + z^3 = 3xyz <=> (x+y)^3 − 3xy(x + y) + z^3 = 3xyz
⇔ (x + y)^3 + z^3 − 3xy(x + y+ z) = 0 ⇔ (x + y)^3 + z^3 − 3xy(x + y + z) = 0
⇔ (x + y + z)[(x + y)^2 − z (x + y) + z^2] − 3xy(x + y + z) = 0 ⇔ (x + y + z)[(x + y)^2 − z(x + y) + z2] − 3xy(x + y + z) = 0
⇔ (x + y + z)(x^2 + y^2 + z^2 − xy − yz − xz) = 0 ⇔ (x + y + z)(x^2 + y^2 + z^2 − xy − yz − xz) = 0
<=> x + y + z = 0 (1) và x^2 + y^2 + z^2 − xy − yz − xz = 0 (2)
Với (1): ⇔ ab + bc + ac = 0 ⇔ ab + bc + ac = 0
P = (1 + a/b)(1 + b/c)(1 + c/a) = (a + b)(b + c)(c + a)/abc=(ab + bc + ac)(a + b + c) − abc/abc = 0 − abc/abc = −1
Với (2) ⇔ (x − y)^2 + (y − z)^2 + (z − x)^2/2 = 0
⇔ (x − y)^2 + (y − z)^2 + (z − x)^2 = 0
Ta thấy (x − y)^2; (y − z)^2; (z − x)^2 ≥ 0 ∀x, y, z nên để tổng của chúng bằng 0 thì:
(x − y)^2 = (y − z)^2 = (z − x)^2 = 0 ⇒ x = y = z
⇔ ab = bc = ac ⇔ a=b=c (do a, b, c ≠ 0)
⇒ A = (1 + 1)(1 + 1)(1 + 1) = 8
Vậy...........
\(P=\sqrt{\dfrac{3a^2+1}{3b^2+1}}+\sqrt{\dfrac{3b^2+1}{3c^2+1}}+\sqrt{\dfrac{3c^2+1}{3a^2+1}}\) (1)
hay \(P=\sqrt{3a^2+\dfrac{1}{3b^2}+1}+\sqrt{3b^2+\dfrac{1}{3c^2}+1}+\sqrt{3c^2+\dfrac{1}{3a^2}+1}\) (2)
vậy ?