K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Ta có: \({u_{n + 1}} = 3{\left( { - 2} \right)^{n + 1}}\)

Xét thương: \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{3{{\left( { - 2} \right)}^{n + 1}}}}{{3{{\left( { - 2} \right)}^n}}} = \frac{{3{{\left( { - 2} \right)}^n}.\left( { - 2} \right)}}{{3{{\left( { - 2} \right)}^n}}} =  - 2\)

Vậy dãy số là cấp số nhân có công bội \(q =  - 2\).

b) Ta có: \({u_{n + 1}} = {\left( { - 1} \right)^{\left( {n + 1} \right) + 1}}{.7^{n + 1}} = {\left( { - 1} \right)^{n + 2}}{.7^{n + 1}}\)

Xét thương: \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{\left( { - 1} \right)}^{n + 2}}{{.7}^{n + 1}}}}{{{{\left( { - 1} \right)}^{n + 1}}{{.7}^n}}} = \frac{{{{\left( { - 1} \right)}^{n + 1}}.\left( { - 1} \right){{.7}^n}.7}}{{{{\left( { - 1} \right)}^{n + 1}}{{.7}^n}}} =  - 7\)

Vậy dãy số là cấp số nhân có công bội \(q =  - 7\).

c) Ta có: \({u_1} = 1;{u_2} = 2{u_1} + 3 = 2.1 + 3 = 5;{u_3} = 2{u_2} + 3 = 2.5 + 3 = 13\)

Vì \(\frac{{{u_2}}}{{{u_1}}} \ne \frac{{{u_3}}}{{{u_2}}}\) nên dãy số không là cấp số nhân.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Đáp án đúng là: D

Dãy số (un) được xác định bởi: u1 = 3 và un = \(\frac{1}{3}\).un-1 với mọi n ≥ 2 là cấp số nhân với số hạng đầu u1 = 3 và q = \(\frac{1}{3}\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Đáp án đúng là: D

Ta có: un+1 = 2n+1+1 = 2n+2

Xét hiệu un+1 – un = 2n+2 – 2n = 3.2n > 0 với mọi n ∈ ℕ*

Vậy dãy số đã cho là dãy số tăng.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({u_n} - {u_{n - 1}} = \left( {3n + 6} \right) - \left[ {3\left( {n - 1} \right) + 6} \right] = 3,\;\forall n \ge 2\)

Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d = 3\).

Chọn đáp án A.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Dãy số trên là cấp số cộng

Ta có:

\(\begin{array}{l}{u_n} = {u_1} + \left( {n - 1} \right)d \Rightarrow {u_1} + \left( {n - 1} \right)d = 3 - 2n\\ \Leftrightarrow {u_1} + nd - d = 3 - 2n\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1} - d = 3\\nd =  - 2n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d =  - 2\end{array} \right.\end{array}\)

b)    Dãy số trên là cấp số cộng

Ta có:

 \(\begin{array}{l}{u_n} = {u_1} + \left( {n - 1} \right)d \Rightarrow {u_1} + \left( {n - 1} \right)d = \frac{{3n + 7}}{5}\\ \Leftrightarrow {u_1} + nd - d = \frac{{3n}}{5} + \frac{7}{5}\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1} - d = \frac{7}{5}\\nd = \frac{3}{5}n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\d = \frac{3}{5}\end{array} \right.\end{array}\)

c) Dãy số đã cho không là cấp số cộng

Ta có: \( u_{n+1} = 3^{n+1} = 3.3^n \)

Xét hiệu \( u_{n+1} – u_n = 3.3^n – 3^n = 2.3^n \) với n ∈ ℕ*

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Ta có: \({u_{n + 1}} = 3 - 4\left( {n + 1} \right) = 3 - 4n - 4 =  - 1 - 4n\)

Xét hiệu: \({u_{n + 1}} - {u_n} = \left( { - 1 - 4n} \right) - \left( {3 - 4n} \right) =  - 1 - 4n - 3 + 4n =  - 4\)

Vậy dãy số là cấp số cộng có công sai \(d =  - 4\).

b) Ta có: \({u_{n + 1}} = \frac{{n + 1}}{2} - 4 = \frac{n}{2} + \frac{1}{2} - 4 = \frac{n}{2} - \frac{7}{2}\)

Xét hiệu: \({u_{n + 1}} - {u_n} = \left( {\frac{n}{2} - \frac{7}{2}} \right) - \left( {\frac{n}{2} - 4} \right) = \frac{n}{2} - \frac{7}{2} - \frac{n}{2} + 4 = \frac{1}{2}\)

Vậy dãy số là cấp số cộng có công sai \(d = \frac{1}{2}\).

c) Ta có: \({u_1} = {5^1} = 5;{u_2} = {5^2} = 25;{u_3} = {5^3} = 125\)

Vì \({u_2} - {u_1} = 20;{u_3} - {u_2} = 100\) nên dãy số không là cấp số cộng.

d) Ta có: \({u_{n + 1}} = \frac{{9 - 5\left( {n + 1} \right)}}{3} = \frac{{9 - 5n - 5}}{3} = \frac{{4 - 5n}}{{3}}\)

Xét hiệu: \({u_{n + 1}} - {u_n} = \frac{{4 - 5n}}{3} - \frac{{9 - 5n}}{3} = \frac{{\left( {4 - 5n} \right) - \left( {9 - 5n} \right)}}{3} = \frac{{4 - 5n - 9 + 5n}}{3} =  - \frac{5}{3}\)

Vậy dãy số là cấp số cộng có công sai \(d =  - \frac{5}{3}\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

A. Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{u_n^2}}{{{u_n}}} = {u_n}\) phụ thuộc vào n nên (\({u_n})\) thay đổi, do đó\(\left( {{u_n}} \right)\) không phải cấp số nhân.

B. Ta có: \(\frac{{{u_{n + 1}}}}{{{{u_n}}}}= 2\), do đó \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 2\).

C. Ta có: \({u_{n + 1}}- {u_n} = 2\), do đó \(\left( {{u_n}} \right)\) là cấp số cộng với \(d = 2\) .

D. Ta có: \({u_{n + 1}}- {u_n} =  - 2\), do đó \(\left( {{u_n}} \right)\) là cấp số cộng với \(d = -2\).

Vậy ta chọn đáp án B.

9 tháng 4 2017
a) Dãy số bị chặn dưới vì un = 2n2 -1 ≥ 1 với mọi n ε N* và không bị chặn trên vì với số M dương lớn bất kì, ta có 2n2 -1 > M <=> n > . tức là luôn tồn tại n ≥ + 1 để 2 - 1 > M. b) Dễ thấy un > 0 với mọi n ε N* Mặt khác, vì n ≥ 1 nên n2 ≥ 1 và 2n ≥ 2. Do đó n(n + 2) = n2 + 2n ≥ 3, suy ra . Vậy dãy số bị chặn 0 < un với mọi n ε N* c) Vì n ≥ 1 nên 2n2 - 1 > 0, suy ra > 0 Mặt khác n2 ≥ 1 nên 2n2 ≥ 2 hay 2n2 - 1≥ 1, suy ra ≤ 1. Vậy 0 < un ≤ 1, với mọi n ε N* , tức dãy số bị chặn. d) Ta có: sinn + cosn = √2sin(n + ), với mọi n. Do đó: -√2 ≤ sinn + cosn ≤ √2 với mọi n ε N* Vậy -√2 < un < √2, với mọi n ε N* .


NV
27 tháng 1 2021

\(u_{n+1}=5u_n+a-5\)

Dãy là CSN khi \(a-5=0\Leftrightarrow a=5\)