1/4+25/28+67/70+127/130+205/208+301/303
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+\frac{1}{208}\)
\(=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{16}\right)\)
\(=\frac{1}{3}.\frac{15}{16}=\frac{5}{16}\)
Gọi tổng là A
⇒ A = \(\dfrac{1}{28}+\dfrac{1}{70}+\dfrac{1}{130}+\dfrac{1}{208}+...+\dfrac{1}{3190}\)
⇒ 3A = \(3\left(\dfrac{1}{28}+\dfrac{1}{70}+\dfrac{1}{130}+\dfrac{1}{208}+...+\dfrac{1}{3190}\right)\)
⇒ 3A = \(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+\dfrac{3}{13.16}+...+\dfrac{3}{55.58}\)
⇒ 3A = \(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}+...+\dfrac{1}{55}-\dfrac{1}{58}\)
⇒ 3A = \(\dfrac{1}{4}-\dfrac{1}{58}\) = \(\dfrac{29}{116}-\dfrac{2}{116}\) = \(\dfrac{27}{116}\)
⇒ A = \(\dfrac{27}{116}\): 3 = \(\dfrac{27}{116}\).\(\dfrac{1}{3}\) = \(\dfrac{9}{116}\)
1/2A=1/2(6/4+6/28+6/70+6/130+6/208)
= 3/4+3/28+3/70+3/130+3/208
= 1-1/4+1/4-1/7+..................-1/16
=1-1/16
=15/16 => A=15/8
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+\frac{1}{208}\)
\(=\frac{1}{1\times4}+\frac{1}{4\times7}+\frac{1}{7\times10}+\frac{1}{10\times13}+\frac{1}{13\times16}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\)
\(=1-\frac{1}{16}=\frac{15}{16}\)
Chúc bạn học tốt ^^
1+100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000=1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
4 = 1.4 =1.(1+3)
28=4.7=4.(4+3)
70=7.10=7.(7+3)
130=10.13=10.(10+3)
208=13.16=13.(13+3)
suy ra n(n+3)
\(B=\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}\)
\(\Rightarrow B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}\)
\(\Rightarrow B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}\)
\(\Rightarrow B=1-\frac{1}{19}=\frac{18}{19}\)
Vậy \(B=\frac{18}{19}\)
Chúc bn học tốt
B = \(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}\)
= \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}\)
= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{13}-\frac{1}{16}\)
= \(1-\frac{1}{16}\)
= \(\frac{15}{16}\)
5,055...X_X