K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

Tìm trước khi hỏi : 

Đề vòng 1 chuyên sư phạm 2016-2017 - Tài liệu - Đề thi - Diễn đàn Toán học

6 tháng 6 2017

Witch Rose

Vì a,b,ca,b,c không âm và a+b+c=1a+b+c=1 nên 2t=5c+432≤t=5c+4≤3

Ta có:a,b025ab+20(a+b)+1620(a+b)+16a,b≥0⇒25ab+20(a+b)+16≥20(a+b)+16

(5a+4)(5b+4)4(5a+5b+4)⇔(5a+4)(5b+4)≥4(5a+5b+4)

(5a+4+5b+4)2(2+5a+5b+4)2⇔(5a+4+5b+4)2≥(2+5a+5b+4)2

5a+4+5b+42+95c=2+13

23 tháng 6 2016

nè Cho a, b, c là ba số thực không âm và thỏa mãn a + b + c = 1. Chứng minh rằngcăn(5a + 4) + căn(5b + 4) + căn(5c + 4) >= 7- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!

Ta có : \(\left\{{}\begin{matrix}a,b,c\ge0\\a+b+c=1\end{matrix}\right.\Rightarrow a\le1\Leftrightarrow a^2\le a\)

\(VT=\sqrt{4a+4.1+1}+\sqrt{4b+4.1+1}+\sqrt{4c+4.1+1}\ge\sqrt{4a^2+4a+1}+\sqrt{4b^2+4b+1}+\sqrt{4c^2+4c+1}\)

\(=2a+1+2b+1+2c+1=7\) .

Vậy đẳng thức được chứng minh . Dấu \("="\Leftrightarrow a=1;b=0;c=0\) và hoán vị

À sorry mình nhầm .

\(VT=\sum\sqrt{4a+4+1}\ge\sum\sqrt{a^2+4a+4}=a+2+b+2+c+2=7\)

22 tháng 1 2021

Do \(a,b,c\geq 0\) và \(a+b+c=1\) nên \(a,b,c\le1\).

Xét hiệu \(5a+4-\left(a+2\right)^2=a\left(1-a\right)\ge0\)

\(\Rightarrow5a+4\ge\left(a+2\right)^2\)

\(\Rightarrow\sqrt{5a+4}\ge a+2\).

Tương tự, \(\sqrt{5b+4}\ge b+2;\sqrt{5c+4}\ge c+2\).

Cộng vế với vế ta có \(T\ge a+b+c+6=7\).

Đẳng thức xảy ra khi a = 1; b = c = 0 và các hoán vị.

Vậy Min T = 7 khi a = 1; b = c = 0. 

22 tháng 1 2021

Một ý tưởng để có được bất đẳng thức phụ \(\sqrt{5a+4}\ge a+2\forall0\le a\le1.\)

Do $0\leq a \leq 1$ nên $a\ge a^2.$

Ta có: \(\sqrt{5a+4}=\sqrt{a+4a+4+\ 4}\ge\sqrt{a^2+4a+4+4}=a+2\)

Ngoài ra còn một cách là giả sử \(\sqrt{5a+4}\ge ma+n\)

rồi đi chọn $m,n$ theo điểm rơi.

Không biết còn cách nào khác không nhỉ?

9 tháng 7 2017

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]

16 tháng 8 2018

Áp dụng bđt bunhiacopxki có:

\(\left(\sqrt{5a+1}+\sqrt{5b+1}+\sqrt{5c+1}\right)^2\le\left(5a+1+5b+1+5c+1\right)\left(1^2+1^2+1^2\right)=3\cdot\left[5\left(a+b+c\right)+3\right]=3\cdot8=24\)

\(\Leftrightarrow\sqrt{5a+1}+\sqrt{5b+1}+\sqrt{5c+1}\le\sqrt{24}=2\sqrt{6}\left(đpcm\right)\)

Dấu ''='' xảy ra khi \(a=b=c=\dfrac{1}{3}\)

1 tháng 11 2019

Áp dụng bất đẳng thức Cauchy - Schwarz

\(3=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow a+b+c\ge3\)

Và 

\(VT^2=\left(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\right)^2\)

\(\le\left(5a+4+5b+4+5c+4\right)\left(1+1+1\right)\)

\(\Leftrightarrow VT^2\le15\left(a+b+c\right)+36\)

Mà \(3\le a+b+c\left(cmt\right)\)

\(\Rightarrow VT^2\le15\left(a+b+c\right)+12\left(a+b+c\right)=27\left(a+b+c\right)\)

\(\Rightarrow VT\le3\sqrt{3\left(a+b+c\right)}\)

Ta có đpcm

Dấu " = " xảy ra khi \(a=b=c=1\)

8 tháng 1 2020

Đặt \(\left(\sqrt{5a+4};\sqrt{5b+4};\sqrt{5c+4}\right)=\left(x;y;z\right)\) \(\left(2\le x;y;z\le3\right)\)

\(\Rightarrow x^2+y^2+z^2=5\left(a+b+c\right)+12=5+12=17\)

Ta lại có: \(2\le x\le3\Rightarrow\left(x-2\right)\left(x-3\right)\le0\)\(\Rightarrow x^2-5x+6\le0\)

T/tự: \(y^2-5y+6\le0;z^2-5z+6\le0\)

Nên: \(\left(x^2-5x+6\right)+\left(y^2-5y+6\right)+\left(z^2-5z+6\right)\le0\)

\(\Rightarrow5\left(x+y+z\right)\ge x^2+y^2+z^2+18=17+18=35\)

\(\Rightarrow x+y+z\ge7\)

Đẳng thức xảy ra khi: \(\left(x;y;z\right)=\left(2;2;3\right)\) và các hoán vị

Vậy MinT=7 đạt được khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị