Xét một vật bắt đầu dao động điều hoà từ vị trí cân bằng, hãy chỉ ra những khoảng thời gian trong một chu kì dao động mà:
a) thế năng tăng dần trong khi động năng giảm dần.
b) thế năng giảm dần trong khi động năng tăng dần.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình dao động của vật là: \(x=Acos\left(\omega t-\dfrac{\pi}{2}\right)\)
Thế năng của dao động là: \(W_t=\dfrac{1}{2}m\omega^2A^2cos^2\left(\omega t-\dfrac{\pi}{2}\right)\)
Động năng của dao động là: \(W_d=\dfrac{1}{2}m\omega^2A^2sin^2\left(\omega t-\dfrac{\pi}{2}\right)\)
Đường màu xanh lá cây là thế năng, đường màu xanh nước biển là động năng
Trên đồ thị những thời điểm mà hai đồ thị cắt nhau thì động năng và thế năng có độ lớn bằng nhau
Hệ dao động điều hoà với chu kì 2 s nên tần số góc là: ω=π(rad/s)
Động năng và thế năng bằng nhau lần thứ nhất thì:
Wt=Wd⇒\(\frac{1}{2}\)mω2A2cos2(ωt+φ0)= \(\frac{1}{2}\)mω2A2sin2(ωt+φ0)
⇒cos2(πt+φ0)=sin2(πt+φ0)
⇒πt+φ0=\(\frac{\pi }{4} + \frac{{k\pi }}{2}\)
Lần thứ nhất động năng và thế năng bằng nhau nên k=1,t=0 nên ta có: φ0=\(\frac{{3\pi }}{4}\)
Động năng và thế năng bằng nhau lần thứ hai sau khoảng thời gian:
πt+\(\frac{{3\pi }}{4}\)=\(\frac{\pi }{4} + \frac{{2\pi }}{2}\)⇒t=0,5s
Chọn đáp án C
W d = 3 W t ⇒ x = ± A 2
W d = W t ⇒ x = ± A 2
Do xét thời gian ngắn nhất nên ta có thể xét trường hợp như hình vẽ
⇒ v ¯ = S t = A 2 − A 2 T 24 = 24 , 85 c m / s .
Chọn A
+ Wđ = 3 Wt => W = Wđ +Wt = 4Wt =>
+ Tương tự,
+ Thời gian ngắn nhất là khi vật đi thẳng từ
Sử dụng thang thời gian :
+ Tốc độ trung bình: vtb = S : tmin = 30.(√3 - 1) ≈ 21,96 cm/s.
a) thế năng tăng dần trong khi động năng giảm dần là quá trình vật dao động từ vị trí cân bằng về hai biên.
b) thế năng giảm dần trong khi động năng tăng dần là quá trình vật dao động từ vị trí biên về vị trí cân bằng.